Search results

1 – 10 of over 1000
Article
Publication date: 11 July 2018

Zhaotian Wang, Yezhuo Li and Yan-An Yao

The purpose of this paper is to put forward a rolling assistant robot with two rolling modes, and the multi-mode rolling motion strategy with path planning algorithm, which is…

Abstract

Purpose

The purpose of this paper is to put forward a rolling assistant robot with two rolling modes, and the multi-mode rolling motion strategy with path planning algorithm, which is suitable to this multi-mode mobile robot, is proposed based on chessboard-shaped grid division (CGD).

Design/methodology/approach

Based on the kinematic analysis and motion properties of the mobile parallel robot, the motion strategy based on CGD path planning algorithm of a mobile robot with two rolling modes moving to a target position is divided into two parts, which are local self-motion planning and global path planning. In the first part, the mobile parallel robot can move by switching and combining the two rolling modes; and in the second part, the specific algorithm of the global path planning is proposed according to the CGD of the moving ground.

Findings

The assistant robot, which is a novel 4-RSR mobile parallel robot (where R denotes a revolute joint and S denotes a spherical joint) integrating operation and rolling locomotion (Watt linkage rolling mode and 6R linkage rolling mode), can work as a moving spotlight or worktable. A series of simulation and prototype experiment results are presented to verify the CGD path planning strategy of the robot, and the performance of the path planning experiments in simulations and practices shows the validation of the path planning analysis.

Originality/value

The work presented in this paper is a further exploration to apply parallel mechanisms with two rolling modes to the field of assistant rolling robots by proposing the CGD path planning strategy. It is also a new attempt to use the specific path planning algorithm in the field of mobile robots for operating tasks.

Details

Industrial Robot: An International Journal, vol. 45 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 16 January 2017

Yezhuo Li, Yan-An Yao, Junlin Cheng, Yaobin Tian and Ran Liu

The purpose of this paper is to propose an agile assistant robot to be used as a mobile partner with two rotational motions and one translational motion. This robot possesses the…

Abstract

Purpose

The purpose of this paper is to propose an agile assistant robot to be used as a mobile partner with two rotational motions and one translational motion. This robot possesses the rolling function and three operating abilities to assistant human beings in the industrial environment.

Design/methodology/approach

The main body of the robot is a typical 4-RSR (where R denotes a revolute joint and S denotes a spherical joint) parallel mechanism. The mechanism can reach any position on the ground by two rolling modes (the equivalent Watt linkage rolling mode and the equivalent 6R linkage rolling mode), and the robot can work as a spotlight or a worktable in operating modes at the target location. The mobility, rolling modes, operating modes and kinematics are analyzed.

Findings

Based on the results of kinematics of this assistant robot, the upper platform of the 4-RSR rolling mechanism has two rotational motions and one translational motion which can be used in the industry. The proposed concept is verified by experiments on a physical prototype.

Practical implications

This paper also discusses the application to industrial cases where cooperation between workers and robots is required.

Originality/value

The work presented in this paper is a novel exploration to apply parallel mechanisms to the field of assistant rolling robots. It is also a new attempt to use the rolling mechanism in the field of mobile operating robots for industry tasks.

Details

Industrial Robot: An International Journal, vol. 44 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 7 June 2021

Changyang Li, Huapeng Wu, Harri Eskelinen and Haibiao Ji

This paper aims to present a detailed mechanical design of a seven-degrees-of-freedom mobile parallel robot for the tungsten inert gas (TIG) welding and machining processes in…

Abstract

Purpose

This paper aims to present a detailed mechanical design of a seven-degrees-of-freedom mobile parallel robot for the tungsten inert gas (TIG) welding and machining processes in fusion reactor. Detailed mechanical design of the robot is presented and both the kinematic and dynamic behaviors are studied.

Design/methodology/approach

First, the model of the mobile parallel robot was created in computer-aided design (CAD) software, then the simulation and optimization of the robot were completed to meet the design requirements. Then the robot was manufactured and assembled. Finally, the machining and tungsten inert gas (TIG) welding tests were performed for validation.

Findings

Currently, the implementation of the robot system has been successfully carried out in the laboratory. The excellent performance has indicated that the robot’s mechanical and software designs are suitable for the given tasks. The quality and accuracy of welding and machining has reached the requirements.

Originality/value

This mobile parallel industrial robot is particularly used in fusion reactor. Furthermore, the structure of the mobile parallel robot can be optimized for different applications.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 7 March 2008

Huapeng Wu, Heikki Handroos and Pekka Pessi

The purpose of this paper is to build up a parallel robot for assembling, machining and repairing of the vacuum vessel of the international thermonuclear experimental reactor…

Abstract

Purpose

The purpose of this paper is to build up a parallel robot for assembling, machining and repairing of the vacuum vessel of the international thermonuclear experimental reactor (ITER).

Design/methodology/approach

The process of assembling and machining of the vacuum vessel need a special robot. By studying the structure of the vacuum vessel, a novel parallel robot is built, which has ten degrees of freedom driven by water hydraulic cylinders and electrical servo motors. Kinematic models for the redundant degree robot have been defined. A prototype has been built. Experiments for machine cutting and laser welding were carried out.

Findings

The parallel robot is capable of holding all necessary machining tools and welding end‐effectors in all positions accurately and stably inside the vacuum vessel sector. The kinematic models appeared to be complex because of the redundant structure of the robot, and an optimization algorithm ensuring the maximum stiffness during the robot motion helps to find the solution in the trajectory planning. The entire design and testing process of the robot appeared to be a very complex task due to the high specialization of the manufacturing technology needed in the ITER reactor, while the results demonstrate the applicability of the proposed solutions quite well.

Originality/value

Offers not only a device but also a methodology for the assembling and repairing of ITER by means of a parallel robot.

Details

Industrial Robot: An International Journal, vol. 35 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 4 December 2019

Fei Guo, Shoukun Wang, Junzheng Wang and Huan Yu

In this research, the authors established a hierarchical motion planner for quadruped locomotion, which enables a parallel wheel-quadruped robot, the “BIT-NAZA” robot, to traverse…

Abstract

Purpose

In this research, the authors established a hierarchical motion planner for quadruped locomotion, which enables a parallel wheel-quadruped robot, the “BIT-NAZA” robot, to traverse rough three-dimensional (3-D) terrain.

Design/methodology/approach

Presented is a novel wheel-quadruped mobile robot with parallel driving mechanisms and based on the Stewart six degrees of freedom (6-DOF) platform. The task for traversing rough terrain is decomposed into two prospects: one is the configuration selection in terms of a local foothold cost map, in which the kinematic feasibility of parallel mechanism and terrain features are satisfied in heuristic search planning, and the other one is a whole-body controller to complete smooth and continuous motion transitions.

Findings

A fan-shaped foot search region focuses on footholds with a strong possibility of becoming foot placement, simplifying computation complexity. A receding horizon avoids kinematic deadlock during the search process and improves robot adaptation.

Research limitations/implications

Both simulation and experimental results validated the proposed scenario available and appropriate for quadruped locomotion to traverse challenging 3-D terrains.

Originality/value

This paper analyzes kinematic workspace for a parallel robot with 6-DOF Stewart mechanism on both body and foot. A fan-shaped foot search region enhances computation efficiency. Receding horizon broadens the preview search to decrease the possibility of deadlock minima resulting from terrain variation.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 25 October 2019

Xiangyu Liu, Chunyan Zhang, Cong Ni and Chenhui Lu

The purpose of this paper is to put forward a nvew reconfigurable multi-mode walking-rolling robot based on the single-loop closed-chain four-bar mechanism, and the robot can be…

Abstract

Purpose

The purpose of this paper is to put forward a nvew reconfigurable multi-mode walking-rolling robot based on the single-loop closed-chain four-bar mechanism, and the robot can be changed to different modes according to the terrain.

Design/methodology/approach

Based on the topological analysis, singularity analysis, feasibility analysis, gait analysis and the motion strategy based on motor time-sharing control, the paper theoretically verified that the robot can switch between the four motion modes.

Findings

The robot integrates four-bar walking, self-deforming and four-bar and six-bar rolling modes. A series of simulation and prototype experiment results are presented to verify the feasibility of multiple motion modes of the robot.

Originality/value

The work presented in this paper provides a good theoretical basis for further exploration of multiple mode mobile robots. It is an attempt to design the multi-mode mobile robot based on single loop kinematotropic mechanisms. It is also a kind of exploration of the new unknown movement law.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 18 May 2021

Zhirui Wang, Yezhuo Li, Bo Su, Lei Jiang, Ziming Zhao and Yan-An Yao

The purpose of this paper is to introduce a tetrahedral mobile robot with only revolute joints (TMRR). By using rotation actuators, the mechanism of the robot gains favorable…

Abstract

Purpose

The purpose of this paper is to introduce a tetrahedral mobile robot with only revolute joints (TMRR). By using rotation actuators, the mechanism of the robot gains favorable working space and eliminates the engineering difficulties caused by the multilevel extension compared with liner actuators. Furthermore, the rolling locomotion is improved to reduce displacement error based on dynamics analysis.

Design/methodology/approach

The main body of deforming mechanism with a tetrahedral exterior shape is composed of four vertexes and six RRR chains. The mobile robot can achieve the rolling locomotion and reach any position on the ground by orderly driving the rotation actuators. The global kinematics of the mobile modes are analyzed. Dynamics analysis of the robot falling process is carried out during the rolling locomotion, and the rolling locomotion is improved by reducing the collision impulse along with the moving direction.

Findings

Based on global kinematics analysis of TMRR, the robot can realize the continuous mobility based on rolling gait planning. The main cause of robot displacement error and the corresponding improvement locomotion are gained through dynamic analysis. The results of the theoretical analysis are verified by experiments on a physical prototype.

Originality/value

The work introduced in this paper is a novel exploration of applying the mechanism with only revolute joints to the field of tetrahedral rolling robots. It is also an attempt to use the improved rolling locomotion making this kind of mobile robot more practical. Meanwhile, the reasonable engineering structure of the robot provides feasibility for load carrying.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 31 May 2022

Junlin Cheng, Peiyu Ma, Qiang Ruan, Yezhuo Li and Qianqian Zhang

The purpose of this paper is to propose an overall deformation rolling mechanism based on double four-link mechanism. The double quadrilateral mobile mechanism (DQMM) has two…

Abstract

Purpose

The purpose of this paper is to propose an overall deformation rolling mechanism based on double four-link mechanism. The double quadrilateral mobile mechanism (DQMM) has two switchable working modes which can be used to traverse different terrains or climb over obstacles.

Design/methodology/approach

The main body of the DQMM is composed of a double four-link mechanism which sharing a public link and two symmetrical steering platforms which placed at both ends of the four-link mechanism. The steering platforms give the DQMM not only steering ability but also reconnaissance ability which can be achieved by carrying sensors such as cameras on steering platforms. By controlling the deformation of the DQMM, it can switch between two working modes (tracked rolling mode and obstacle-climbing mode) to achieve the functions of rolling and obstacle-climbing. Dynamic simulation model was established to verify the feasibility.

Findings

Based on the kinematics analysis and simulation results of the DQMM, its moving function is realized by the tracked rolling mode, and the obstacle-climbing mode is used to climb over obstacles in structured terrains such as continuous stairs. The feasibility of the two working modes is verified on a physical prototype.

Originality/value

The work of this paper is a new exploration of applying “overall closed moving linkages mechanism” to the area of small mobile mechanisms. The adaptability of different terrains and the ability of obstacle-climbing are improved by the combination of multi-modes.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 16 October 2018

Dayal R. Parhi and Animesh Chhotray

This paper aims to generate an obstacle free real time optimal path in a cluttered environment for a two-wheeled mobile robot (TWMR).

Abstract

Purpose

This paper aims to generate an obstacle free real time optimal path in a cluttered environment for a two-wheeled mobile robot (TWMR).

Design/methodology/approach

This TWMR resembles an inverted pendulum having an intermediate body mounted on a robotic mobile platform with two wheels driven by two DC motors separately. In this article, a novel motion planning strategy named as DAYANI arc contour intelligent technique has been proposed for navigation of the two-wheeled self-balancing robot in a global environment populated by obstacles. The developed new path planning algorithm evaluates the best next feasible point of motion considering five weight functions from an arc contour depending upon five separate navigational parameters.

Findings

Authenticity of the proposed navigational algorithm has been demonstrated by computing the path length and time taken through a series of simulations and experimental verifications and the average percentage of error is found to be about 6%.

Practical implications

This robot dynamically stabilizes itself with taller configuration, can spin on the spot and rove along through obstacles with smaller footprints. This diversifies its areas of application to both indoor and outdoor environments especially with very narrow spaces, sharp turns and inclined surfaces where its multi-wheel counterparts feel difficult to perform.

Originality/value

A new obstacle avoidance and path planning algorithm through incremental step advancement by evaluating the best next feasible point of motion has been established and verified through both experiment and simulation.

Details

Industrial Robot: An International Journal, vol. 45 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 December 2020

Rui Lin, Haibo Huang and Maohai Li

This study aims to present an automated guided logistics robot mainly designed for pallet transportation. Logistics robot is compactly designed. It could pick up the pallet…

Abstract

Purpose

This study aims to present an automated guided logistics robot mainly designed for pallet transportation. Logistics robot is compactly designed. It could pick up the pallet precisely and transport the pallet up to 1,000 kg automatically in the warehouse. It could move freely in all directions without turning the chassis. It could work without any additional infrastructure based on laser navigation system proposed in this work.

Design/methodology/approach

Logistics robot should be able to move underneath and lift up the pallet accurately. Logistics robot mainly consists of two sub-robots, like two forks of the forklift. Each sub-robot has front and rear driving units. A new compact driving unit is compactly designed as a key component to ensure access to the narrow free entry of the pallet. Besides synchronous motions in all directions, the two sub-robots should also perform synchronous lifting up and laying down the pallet. Logistics robot uses a front laser to detect obstacles and locate itself using on-board navigation system. A rear laser is used to recognize and guide the sub-robots to pick up the pallet precisely within ± 5mm/1o in x-/yaw direction. Path planning algorithm under different constraints is proposed for logistics robot to obey the traffic rules of pallet logistics.

Findings

Compared with the traditional forklift vehicles, logistics robot has the advantages of more compact structure and higher expandability. It can realize the omnidirectional movement flexibly without turning the chassis and take zero-radius turn by controlling compact driving units synchronously. Logistics robot can move collision-free into any pallet that has not been precisely placed. It can plan the paths for returning to charge station and charge automatically. So it can work uninterruptedly for 7 × 24 h. Path planning algorithm proposed can avoid traffic congestion and improve the passability of the narrow roads to improve logistics efficiencies. Logistics robot is quite suitable for the standardized logistics factory with small working space.

Originality/value

This is a new innovation for pallet transportation vehicle to improve logistics automation.

Details

Assembly Automation, vol. 41 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

1 – 10 of over 1000