Search results

1 – 10 of 466
Article
Publication date: 21 January 2022

Jie Li, Chenyang Yin, Yunde Shi, Suya Dai and Xingsong Wang

Periodic inspection of bridge cables is essential, and cable-climbing robots can replace human workers to perform risky tasks and improve inspection efficiency. However, cable…

Abstract

Purpose

Periodic inspection of bridge cables is essential, and cable-climbing robots can replace human workers to perform risky tasks and improve inspection efficiency. However, cable inspection robots often fail to surmount large obstacles and cable clamps. The purpose of this paper is to develop a practical cable inspection robot with stronger obstacle-surmounting performance and circumferential rotation capability.

Design/methodology/approa/ch

A cable inspection robot with novel elastic suspension mechanisms and circumferential rotation mechanisms is designed and proposed in this study. The supporting force and spring deformation of the elastic suspension are investigated and calculated. Dynamic analysis of obstacle surmounting and circumferential rotation is performed. Experiments are conducted on vertical and inclined cables to test the obstacle-surmounting performance and cable-clamp passing of the robot. The practicality of the robot is then verified in field tests.

Findings

With its elastic suspension mechanisms, the cable inspection robot can carry a 12.4 kg payload and stably climb a vertical cable. The maximum heights of obstacles surmounted by the driving wheels and the passive wheels of the robot are 15 mm and 13 mm, respectively. Equipped with circumferential rotation mechanisms, the robot can flexibly rotate and successfully pass cable clamps.

Originality/value

The novel elastic suspension mechanism and circumferential rotation mechanism improve the performance of the cable inspection robot and solve the problem of surmounting obstacles and cable clamps. Application of the robot can promote the automation of bridge cable inspection.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 17 July 2019

Miaolei He, Changji Ren, Jilin He, Kang Wu, Yuming Zhao, Zhijie Wang and Can Wu

Excellent obstacle surmounting performance is essential for the robotic vehicles in uneven terrain. However, existing robotic vehicles depend on complex mechanisms or control…

Abstract

Purpose

Excellent obstacle surmounting performance is essential for the robotic vehicles in uneven terrain. However, existing robotic vehicles depend on complex mechanisms or control algorithms to surmount an obstacle. Therefore, this paper aims to propose a new simple configuration of an all-terrain robotic vehicle with eight wheels including four-swing arms.

Design/methodology/approach

This vehicle is driven by distributed hydraulic motors which provide high mobility. It possesses the ability to change the posture by means of cooperation of the four-swing arms. This ensures that the vehicle can adapt to complex terrain. In this paper, the bionic mechanism, control design and steering method of the vehicle are introduced. Then, the kinematic model of the center of gravity is studied. Afterward, the obstacle surmounting performance based on a static model is analyzed. Finally, the simulation based on ADAMS and the prototype experiment is carried out.

Findings

The experiment results demonstrate that the robotic vehicle can surmount an obstacle 2.29 times the height of the wheel radius, which verifies the feasibility of this new configuration. Therefore, this vehicle has excellent uneven terrain adaptability.

Originality/value

This paper proposes a new configuration of an all-terrain robotic vehicle with four-swing arms. With simple mechanism and control algorithms, the vehicle has a high efficiency of surmounting an obstacle. It can surmount a vertical obstacle 2.29 times the height of the wheel radius.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 30 May 2019

Fengyu Xu and Quansheng Jiang

Field robots can surmount or avoid some obstacles when operating on rough ground. However, cable-climbing robots can only surmount obstacles because their moving path is…

Abstract

Purpose

Field robots can surmount or avoid some obstacles when operating on rough ground. However, cable-climbing robots can only surmount obstacles because their moving path is completely restricted along the cables. This paper aims to analyse the dynamic obstacle-surmounting models for the driving and driven wheels of the climbing mechanism, and design a mechanical structure for a bilateral-wheeled cable-climbing robot to improve the obstacle crossing capability.

Design/methodology/approach

A mechanical structure of the bilateral-wheeled cable-climbing robot is designed in this paper. Then, the kinematic and dynamic obstacle-surmounting of the driven and driving wheels are investigated through static-dynamic analysis and Lagrangian mechanical analysis, respectively. The climbing and obstacle-surmounting experiments are carried out to improve the obstacle crossing capability. The required motion curve, speed and driving moment of the robot during obstacle-surmounting are generated from the experiments results.

Findings

The presented method offers a solution for dynamic obstacle-surmounting analysis of a bilateral-wheeled cable-climbing robot. The simulation, laboratory testing and field experimental results prove that the climbing capability of the robot is near-constant on cables with diameters between 60 and 205 mm.

Originality/value

The dynamic analysis method presented in this paper is found to be applicable to rod structures with large obstacles and improved the stability of the robot at high altitude. Simulations and experiments are also conducted for performance evaluation.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 23 January 2020

Qianqian Zhang, Yezhuo Li, Yan-An Yao and Ruiming Li

The purpose of this paper is to propose a deformable two-wheel-like mobile mechanism based on overconstrained mechanism, with the abilities of fast rolling and obstacle surmounting

Abstract

Purpose

The purpose of this paper is to propose a deformable two-wheel-like mobile mechanism based on overconstrained mechanism, with the abilities of fast rolling and obstacle surmounting. The drive torque of the multi-mode motions is generated by self-deformation. Moreover, the analyses of feasibility and locomotivity of two mobile modes are presented.

Design/methodology/approach

The main body of the two-wheel-like mobile mechanism is a kind of centrally driven 4 R linkages. The mobile mechanism can achieve the capabilities of fast rolling and obstacle surmounting through integrating two mobile modes (spherical-like rolling mode and polyhedral-like obstacle-surmounting mode) and can switch to the corresponding mode to move or surmount obstacles. The mobility and kinematics of the mobile modes are analyzed.

Findings

Based on the results of kinematics analysis and dynamics analysis of the wheel-like mechanism, the spherical-like rolling mode has the capability of fast rolling, and the polyhedral-like obstacle-surmounting mode has the capability of surmounting different obstacle heights by two submodes (quasi-static obstacle-surmounting submode and dynamic obstacle-surmounting submode). The proposed concept is verified by experiments on a physical prototype.

Originality/value

The work presented in this paper is a novel exploration to apply bar linkages in the field of scout. The two-wheel-like mobile mechanism improves the torque imbalance of bar linkages by centrally driven method, removes the rear support structures of the traditional two-wheeled mechanisms by self-deformation and increases the height of obstacle surmounting by mode switching angle.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 20 April 2020

Chengguo Zong, Zhijian Ji, Junzhi Yu and Haisheng Yu

The purpose of this paper is to study the adaptability of the tracked robot in complex working environment. It proposes an angle-changeable tracked robot with human–robot…

Abstract

Purpose

The purpose of this paper is to study the adaptability of the tracked robot in complex working environment. It proposes an angle-changeable tracked robot with human–robot interaction in unstructured environment. The study aims to present the mechanical structure and human–robot interaction control system of the tracked robot and analyze the static stability of the robot working in three terrains, i.e. rugged terrain, sloped terrain and stairs.

Design/methodology/approach

The paper presents the mechanical structure and human–robot interaction control system of the tracked robot. To prevent the detachment of the tracks during obstacle navigation, a new type of passively adaptive device based on the relationship between the track’s variable angle and the forces is presented. Then three types of rough terrain are chosen to analyze the static stability of the tracked robot, i.e. rugged terrain, sloped terrain and stairs.

Findings

This paper provides the design method of the tracked robot. Owing to its appropriate dimensions, good mass distribution and limited velocity, the tracked robot remains stable on the complex terrains. The experimental results verify the effectiveness of the design method.

Originality/value

The theoretical analysis of this paper provides basic reference for the structural design of tracked robots.

Details

Assembly Automation, vol. 40 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 2 April 2019

Chengguo Zong, Zhijian Ji and Haisheng Yu

This paper aims to provide a theoretical principle for the stability control of robot climbing stairs, autonomously based on human–robot interaction. Through this research…

Abstract

Purpose

This paper aims to provide a theoretical principle for the stability control of robot climbing stairs, autonomously based on human–robot interaction. Through this research, tracked mobile robots with human-robot interaction will be extensively used in rescue in disaster, exploration on planetary, fighting in battle, and searching for survivors in collapsed buildings.

Design/methodology/approach

This paper introduces the tracked mobile robot, based on human–robot interaction, and its six moving postures. The dynamic process of climbing stairs is analyzed, and the dynamic model of the robot is proposed. The dynamic stability criterion is derived when the tracked mobile robot contacts the stairs steps in one, two and more points. A further conduction of simulation on the relationship of the traction force and bearing force vs the velocity and acceleration in the three cases was carried out.

Findings

This paper explains that the tracked mobile robot, based on human–robot interaction, can stably climb stairs so long as the velocity and acceleration satisfy the dynamic stability criterion as noted above. In addition, the experiment tests the correctness of dynamic stability analysis when the tracked mobile robot contacts the stair steps in one, two or more points.

Originality/value

This paper provides the mechanical structure and working principle of the tracked mobile robot based on human–robot interaction and proposes an identification method of dynamic stability criterion when the robot contacts the stairs steps in one, two and more points.

Details

Assembly Automation, vol. 40 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 2 September 2019

Wenrui Gao, Weidong Wang, Hongbiao Zhu, Shunping Zhao, Guofu Huang and Zhijiang Du

The paper aims to improve the radiation-proof capability of the self-designed mobile robot with a 7-DOF manipulator, enabling the long-playing inspection and intervention under…

Abstract

Purpose

The paper aims to improve the radiation-proof capability of the self-designed mobile robot with a 7-DOF manipulator, enabling the long-playing inspection and intervention under high-dose radiation environment. In this context, gamma-ray irradiation test for electronic components and specific hardness design have also been specifically presented and discussed.

Design/methodology/approach

The study’s hardness design mainly focuses on shielding protection, distance protection and time protection. Irradiation test is first carried out to investigate irradiation resistance of each electronic module. Then, modular deployment and shielding calculation are completed for the point-type nuclear accidents, respectively, to achieve a robust anti-radiation design scheme. Finally, the field experiment is conducted to validate system effectiveness and good mobility, and operational practices are acquired for the realization of time protection.

Findings

Coupled with modular redeployment and shielding design, irradiation results illustrate the effectiveness of robotic anti-radiation design. Meanwhile, experiences and reformed measures from the field exercise implement efficient operation and radiological time protection.

Research limitations/implications

Considering the huge risks of high-dose source exposure, the radiation-resistance of the overall system cannot be verified in the field experiment. Fortunately, irradiation test and modular shielding calculation are conducted as a minimal validation.

Practical implications

The proposed anti-radiation design methods and the irradiated results can be applied to many other nuclear vehicles and manipulators for the feasible multi-layer protection and excellent mobility.

Originality/value

A nuclear intervention robot with specific hardness design is presented in detail in this paper. Enlightened by the idea of shielding and distance protection, a large number of electronic modules with multiple types and structures are treated and compared in irradiation experiments, while modular redeployment and retrofitting are completed to reduce irradiated damages. To achieve the effect of time protection, mobility performance and operational practices are discussed and validated in the field experiment based on the mobile system.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 6 March 2024

Ruoxing Wang, Shoukun Wang, Junfeng Xue, Zhihua Chen and Jinge Si

This paper aims to investigate an autonomous obstacle-surmounting method based on a hybrid gait for the problem of crossing low-height obstacles autonomously by a six wheel-legged…

Abstract

Purpose

This paper aims to investigate an autonomous obstacle-surmounting method based on a hybrid gait for the problem of crossing low-height obstacles autonomously by a six wheel-legged robot. The autonomy of obstacle-surmounting is reflected in obstacle recognition based on multi-frame point cloud fusion.

Design/methodology/approach

In this paper, first, for the problem that the lidar on the robot cannot scan the point cloud of low-height obstacles, the lidar is driven to rotate by a 2D turntable to obtain the point cloud of low-height obstacles under the robot. Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping algorithm, fast ground segmentation algorithm and Euclidean clustering algorithm are used to recognize the point cloud of low-height obstacles and obtain low-height obstacle in-formation. Then, combined with the structural characteristics of the robot, the obstacle-surmounting action planning is carried out for two types of obstacle scenes. A segmented approach is used for action planning. Gait units are designed to describe each segment of the action. A gait matrix is used to describe the overall action. The paper also analyzes the stability and surmounting capability of the robot’s key pose and determines the robot’s surmounting capability and the value scheme of the surmounting control variables.

Findings

The experimental verification is carried out on the robot laboratory platform (BIT-6NAZA). The obstacle recognition method can accurately detect low-height obstacles. The robot can maintain a smooth posture to cross low-height obstacles, which verifies the feasibility of the adaptive obstacle-surmounting method.

Originality/value

The study can provide the theory and engineering foundation for the environmental perception of the unmanned platform. It provides environmental information to support follow-up work, for example, on the planning of obstacles and obstacles.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 9 May 2023

Pengfei Zhou, Shufeng Tang, Yubin Liu, Jie Zhao and Zaiyong Sun

This study aims to the complex and unpredictable terrain environment of the Qinghai-Tibet Plateau scientific research station, such as cement road, wetland, gravel desert…

Abstract

Purpose

This study aims to the complex and unpredictable terrain environment of the Qinghai-Tibet Plateau scientific research station, such as cement road, wetland, gravel desert, snowfield, ice surface, grassland, slimy ground, steep slope, step, etc., a reconfigurable walking mechanism based on two movement modes of wheel and triangular crawler was proposed.

Design/methodology/approach

By analyzing the deformation mechanism of the walking mechanism, a reconfigurable wheel-crawler-integrated walking mechanism and the configuration scheme are designed. The analysis of the kinematics and mechanical properties of the swing arm system and the deformation mechanism of the walking mechanism.

Findings

The reconfigurable wheel-crawler-integrated walking mechanism can be switched between the wheel and triangular crawler modes by driving the deformation mechanism. Through the numerical simulation of its movement process, and the trial production and experiment of the prototype, indicates the validity of the reconfigurable wheel-crawler-integrated walking mechanism design.

Originality/value

The work of this paper provides a reconfigurable wheel-crawler-integrated-walking mechanism, which can be used by robots in the Qinghai-Tibet Plateau scientific research station. It has excellent reconfigurability and can effectively improve the robot’s adaptability to complex terrain.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 19 July 2022

Xiang-Ming Fan and Qiang Ruan

To take the advantages of terrain-adaptive capability of legged platform and fast-moving ability of wheeled platform, this paper aims to design a leg-wheel mobile platform for…

Abstract

Purpose

To take the advantages of terrain-adaptive capability of legged platform and fast-moving ability of wheeled platform, this paper aims to design a leg-wheel mobile platform for obstacle surmounting and analyze the feasibility and locomotivity of different moving modes.

Design/methodology/approach

The platform consists of six leg-wheel units. Each of the units has a close-chain mechanical leg and an actuated wheel at the end of the leg. The platform moves with two modes: legged mode and leg-wheel composite mode. The legged mode achieves high mobility driven by crank motors, while the leg-wheel composite mode achieves obstacle-surmounting ability actuated by crank motors and pitch link motors and obtains high efficiency with the hub motors. The gait planning in different modes has been carried out and the obstacle-surmounting capacity has been analyzed.

Findings

Based on the results of kinematic analysis and gait planning of the close-chain leg-wheel platform, the high mobility and efficiency obstacle-surmounting ability are demonstrated with the two movement modes. The feasibility of the design and the performance of the mobile platform is verified with the prototype experiment. The results of this paper show that the platform possesses good obstacle-surmounting capability.

Originality/value

The work presented in this paper is a novel exploration to design a close-chain leg mechanism and with an actuated wheel in series. The close-chain leg mechanism has the advantages of high leg lift and single degree of freedom characteristics, which makes the platform obtain the ability of obstacle-surmounting.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of 466