Search results

1 – 10 of over 2000
Article
Publication date: 30 July 2024

Ardalan Sabamehr, Nima Amani and Ashutosh Bagchi

This paper introduces a novel multi-setup merging method and assesses its performance using simulated response data from a Finite Element (FE) model of a five-storey frame and…

Abstract

Purpose

This paper introduces a novel multi-setup merging method and assesses its performance using simulated response data from a Finite Element (FE) model of a five-storey frame and experimental data from a cantilever beam tested in a laboratory setting.

Design/methodology/approach

In the research conducted at the Central Building Research Institute (CBRI) in Roorkee, India, a cantilever beam was examined in a laboratory setting. The study successfully extracted the modal properties of the multi-storey building using the merging technique. Identified frequencies and mode shapes provide valuable insights into the building's dynamic behavior, which is essential for structural analysis and assessment. The sensor layout and data merging approach allowed for the capture of relevant vibration modes despite the limited number of sensors, demonstrating the effectiveness of the methodology.

Findings

The results show that reducing the number of sensors can impact the accuracy of the mode shapes. It is recommended to use a minimum of 8 sensor locations (every two floors) for the building under study to obtain reliable benchmark results for further evaluation, periodic monitoring, and damage identification.

Originality/value

The results demonstrate that the developed algorithm can improve the system identification process and streamline data handling. Furthermore, the proposed method is successfully applied to analyze the modal properties of a multi-storey building.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Open Access
Article
Publication date: 11 June 2024

Julian Rott, Markus Böhm and Helmut Krcmar

Process mining (PM) has emerged as a leading technology for gaining data-based insights into organizations’ business processes. As processes increasingly cross-organizational…

Abstract

Purpose

Process mining (PM) has emerged as a leading technology for gaining data-based insights into organizations’ business processes. As processes increasingly cross-organizational boundaries, firms need to conduct PM jointly with multiple organizations to optimize their operations. However, current knowledge on cross-organizational process mining (coPM) is widely dispersed. Therefore, we synthesize current knowledge on coPM, identify challenges and enablers of coPM, and build a socio-technical framework and agenda for future research.

Design/methodology/approach

We conducted a literature review of 66 articles and summarized the findings according to the framework for Information Technology (IT)-enabled inter-organizational coordination (IOC) and the refined PM framework. The former states that within inter-organizational relationships, uncertainty sources determine information processing needs and coordination mechanisms determine information processing capabilities, while the fit between needs and capabilities determines the relationships’ performance. The latter distinguishes three categories of PM activities: cartography, auditing and navigation.

Findings

Past literature focused on coPM techniques, for example, algorithms for ensuring privacy and PM for cartography. Future research should focus on socio-technical aspects and follow four steps: First, determine uncertainty sources within coPM. Second, design, develop and evaluate coordination mechanisms. Third, investigate how the mechanisms assist with handling uncertainty. Fourth, analyze the impact on coPM performance. In addition, we present 18 challenges (e.g. integrating distributed data) and 9 enablers (e.g. aligning different strategies) for coPM application.

Originality/value

This is the first article to systematically investigate the status quo of coPM research and lay out a socio-technical research agenda building upon the well-established framework for IT-enabled IOC.

Details

Business Process Management Journal, vol. 30 no. 8
Type: Research Article
ISSN: 1463-7154

Keywords

Article
Publication date: 19 January 2024

Mohamed Marzouk and Mohamed Zaher

Facility management gained profound importance due to the increasing complexity of different systems and the cost of operation and maintenance. However, due to the increasing…

111

Abstract

Purpose

Facility management gained profound importance due to the increasing complexity of different systems and the cost of operation and maintenance. However, due to the increasing complexity of different systems, facility managers may suffer from a lack of information. The purpose of this paper is to propose a new facility management approach that links segmented assets to the vital data required for managing facilities.

Design/methodology/approach

Automatic point cloud segmentation is one of the most crucial processes required for modelling building facilities. In this research, laser scanning is used for point cloud acquisition. The research utilises region growing algorithm, colour-based region-growing algorithm and Euclidean cluster algorithm.

Findings

A case study is worked out to test the accuracy of the considered point cloud segmentation algorithms utilising metrics precision, recall and F-score. The results indicate that Euclidean cluster extraction and region growing algorithm revealed high accuracy for segmentation.

Originality/value

The research presents a comparative approach for selecting the most appropriate segmentation approach required for accurate modelling. As such, the segmented assets can be linked easily with the data required for facility management.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 19 July 2023

Ruochen Zeng, Jonathan J.S. Shi, Chao Wang and Tao Lu

As laser scanning technology becomes readily available and affordable, there is an increasing demand of using point cloud data collected from a laser scanner to create as-built…

Abstract

Purpose

As laser scanning technology becomes readily available and affordable, there is an increasing demand of using point cloud data collected from a laser scanner to create as-built building information modeling (BIM) models for quality assessment, schedule control and energy performance within construction projects. To enhance the as-built modeling efficiency, this study explores an integrated system, called Auto-Scan-To-BIM (ASTB), with an aim to automatically generate a complete Industry Foundation Classes (IFC) model consisted of the 3D building elements for the given building based on its point cloud without requiring additional modeling tools.

Design/methodology/approach

ASTB has been developed with three function modules. Taking the scanned point data as input, Module 1 is built on the basis of the widely used region segmentation methodology and expanded with enhanced plane boundary line detection methods and corner recalibration algorithms. Then, Module 2 is developed with a domain knowledge-based heuristic method to analyze the features of the recognized planes, to associate them with corresponding building elements and to create BIM models. Based on the spatial relationships between these building elements, Module 3 generates a complete IFC model for the entire project compatible with any BIM software.

Findings

A case study validated the ASTB with an application with five common types of building elements (e.g. wall, floor, ceiling, window and door).

Originality/value

First, an integrated system, ASTB, is developed to generate a BIM model from scanned point cloud data without using additional modeling tools. Second, an enhanced plane boundary line detection method and a corner recalibration algorithm are developed in ASTB with high accuracy in obtaining the true surface planes. At last, the research contributes to develop a module, which can automatically convert the identified building elements into an IFC format based on the geometry and spatial relationships of each plan.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 9
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 3 November 2022

Reza Edris Abadi, Mohammad Javad Ershadi and Seyed Taghi Akhavan Niaki

The overall goal of the data mining process is to extract information from an extensive data set and make it understandable for further use. When working with large volumes of…

Abstract

Purpose

The overall goal of the data mining process is to extract information from an extensive data set and make it understandable for further use. When working with large volumes of unstructured data in research information systems, it is necessary to divide the information into logical groupings after examining their quality before attempting to analyze it. On the other hand, data quality results are valuable resources for defining quality excellence programs of any information system. Hence, the purpose of this study is to discover and extract knowledge to evaluate and improve data quality in research information systems.

Design/methodology/approach

Clustering in data analysis and exploiting the outputs allows practitioners to gain an in-depth and extensive look at their information to form some logical structures based on what they have found. In this study, data extracted from an information system are used in the first stage. Then, the data quality results are classified into an organized structure based on data quality dimension standards. Next, clustering algorithms (K-Means), density-based clustering (density-based spatial clustering of applications with noise [DBSCAN]) and hierarchical clustering (balanced iterative reducing and clustering using hierarchies [BIRCH]) are applied to compare and find the most appropriate clustering algorithms in the research information system.

Findings

This paper showed that quality control results of an information system could be categorized through well-known data quality dimensions, including precision, accuracy, completeness, consistency, reputation and timeliness. Furthermore, among different well-known clustering approaches, the BIRCH algorithm of hierarchical clustering methods performs better in data clustering and gives the highest silhouette coefficient value. Next in line is the DBSCAN method, which performs better than the K-Means method.

Research limitations/implications

In the data quality assessment process, the discrepancies identified and the lack of proper classification for inconsistent data have led to unstructured reports, making the statistical analysis of qualitative metadata problems difficult and thus impossible to root out the observed errors. Therefore, in this study, the evaluation results of data quality have been categorized into various data quality dimensions, based on which multiple analyses have been performed in the form of data mining methods.

Originality/value

Although several pieces of research have been conducted to assess data quality results of research information systems, knowledge extraction from obtained data quality scores is a crucial work that has rarely been studied in the literature. Besides, clustering in data quality analysis and exploiting the outputs allows practitioners to gain an in-depth and extensive look at their information to form some logical structures based on what they have found.

Details

Information Discovery and Delivery, vol. 51 no. 4
Type: Research Article
ISSN: 2398-6247

Keywords

Article
Publication date: 24 June 2024

Hongwei Wang, Chao Li, Wei Liang, Di Wang and Linhu Yao

In response to the navigation challenges faced by coal mine tunnel inspection robots in semistructured underground intersection environments, many current studies rely on…

Abstract

Purpose

In response to the navigation challenges faced by coal mine tunnel inspection robots in semistructured underground intersection environments, many current studies rely on structured map-based planning algorithms and trajectory tracking techniques. However, this approach is highly dependent on the accuracy of the global map, which can lead to deviations from the predetermined route or collisions with obstacles. To improve the environmental adaptability and navigation precision of the robot, this paper aims to propose an adaptive navigation system based on a two-dimensional (2D) LiDAR.

Design/methodology/approach

Leveraging the geometric features of coal mine tunnel environments, the clustering and fitting algorithms are used to construct a geometric model within the navigation system. This not only reduces the complexity of the navigation system but also optimizes local positioning. By constructing a local potential field, there is no need for path-fitting planning, thus enhancing the robot’s adaptability in intersection environments. The feasibility of the algorithm principles is validated through MATLAB and robot operating system simulations in this paper.

Findings

The experiments demonstrate that this method enables autonomous driving and optimized positioning capabilities in harsh environments, with high real-time performance and environmental adaptability, achieving a positioning error rate of less than 3%.

Originality/value

This paper presents an adaptive navigation system for a coal mine tunnel inspection robot using a 2D LiDAR sensor. The system improves robot attitude estimation and motion control accuracy to ensure safe and reliable navigation, especially at tunnel intersections.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 10 May 2024

Hongshuai Guo, Shuyou Zhang, Nan Zhang, Xiaojian Liu and Guodong Yi

The step effect and support structure generated by the manufacturing process of fused deposition molding parts increase the consumables cost and decrease the printing quality…

Abstract

Purpose

The step effect and support structure generated by the manufacturing process of fused deposition molding parts increase the consumables cost and decrease the printing quality. Multiorientation printing helps improve the surface quality of parts and reduce support, but path interference exists between the printing layer and the layers printed. The purpose of this study is to design printing paths between different submodels to avoid interference when build orientation changed.

Design/methodology/approach

Considering support constraint, build orientation sequence is designed for submodels decomposed by model topology. The minimum printing angle between printing layers is analyzed. Initial path through the oriented bounding box is planned and slice interference relationship is then detected according to the projection topology mapping. Based on the relationship matrix of multiorientation slice, feasible path is calculated by directed graph (DG). Final printing path is determined under support constraint and checked by minimum printing angle. The simulation model of the robotic arm is established to verify the accessibility of printing path under the constraint of support and slice.

Findings

The proposed method can reduce support structure, decrease volume error and effectively solve the interference problem of the printing path for multiorientation slice.

Originality/value

The method based on projection topology mapping greatly improves the efficiency of interference detection. A feasible path calculated through DGs ensures the effectiveness of the printing path with the constraint of support and slice.

Details

Robotic Intelligence and Automation, vol. 44 no. 3
Type: Research Article
ISSN: 2754-6969

Keywords

Open Access
Article
Publication date: 1 March 2023

Vasileios Stamatis, Michail Salampasis and Konstantinos Diamantaras

In federated search, a query is sent simultaneously to multiple resources and each one of them returns a list of results. These lists are merged into a single list using the…

Abstract

Purpose

In federated search, a query is sent simultaneously to multiple resources and each one of them returns a list of results. These lists are merged into a single list using the results merging process. In this work, the authors apply machine learning methods for results merging in federated patent search. Even though several methods for results merging have been developed, none of them were tested on patent data nor considered several machine learning models. Thus, the authors experiment with state-of-the-art methods using patent data and they propose two new methods for results merging that use machine learning models.

Design/methodology/approach

The methods are based on a centralized index containing samples of documents from all the remote resources, and they implement machine learning models to estimate comparable scores for the documents retrieved by different resources. The authors examine the new methods in cooperative and uncooperative settings where document scores from the remote search engines are available and not, respectively. In uncooperative environments, they propose two methods for assigning document scores.

Findings

The effectiveness of the new results merging methods was measured against state-of-the-art models and found to be superior to them in many cases with significant improvements. The random forest model achieves the best results in comparison to all other models and presents new insights for the results merging problem.

Originality/value

In this article the authors prove that machine learning models can substitute other standard methods and models that used for results merging for many years. Our methods outperformed state-of-the-art estimation methods for results merging, and they proved that they are more effective for federated patent search.

Details

Data Technologies and Applications, vol. 58 no. 3
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 13 August 2024

Yan Kan, Hao Li, Zhengtao Chen, Changjiang Sun, Hao Wang and Joachim Seidelmann

This paper aims to propose a stable and precise recognition and pose estimation method to deal with the difficulties that industrial parts often present, such as incomplete point…

36

Abstract

Purpose

This paper aims to propose a stable and precise recognition and pose estimation method to deal with the difficulties that industrial parts often present, such as incomplete point cloud data due to surface reflections, lack of color texture features and limited availability of effective three-dimensional geometric information. These challenges lead to less-than-ideal performance of existing object recognition and pose estimation methods based on two-dimensional images or three-dimensional point cloud features.

Design/methodology/approach

In this paper, an image-guided depth map completion method is proposed to improve the algorithm's adaptability to noise and incomplete point cloud scenes. Furthermore, this paper also proposes a pose estimation method based on contour feature matching.

Findings

Through experimental testing on real-world and virtual scene dataset, it has been verified that the image-guided depth map completion method exhibits higher accuracy in estimating depth values for depth map hole pixels. The pose estimation method proposed in this paper was applied to conduct pose estimation experiments on various parts. The average recognition accuracy in real-world scenes was 88.17%, whereas in virtual scenes, the average recognition accuracy reached 95%.

Originality/value

The proposed recognition and pose estimation method can stably and precisely deal with the difficulties that industrial parts present and improve the algorithm's adaptability to noise and incomplete point cloud scenes.

Details

Robotic Intelligence and Automation, vol. 44 no. 5
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 4 May 2023

Yi-Yun Cheng and Yilin Xia

The purpose of this study is to provide a systematic literature review on taxonomy alignment methods in information science to explore the common research pipeline and…

Abstract

Purpose

The purpose of this study is to provide a systematic literature review on taxonomy alignment methods in information science to explore the common research pipeline and characteristics.

Design/methodology/approach

The authors implement a five-step systematic literature review process relating to taxonomy alignment. They take on a knowledge organization system (KOS) perspective, and specifically examining the level of KOS on “taxonomies.”

Findings

They synthesize the matching dimensions of 28 taxonomy alignment studies in terms of the taxonomy input, approach and output. In the input dimension, they develop three characteristics: tree shapes, variable names and symmetry; for approach: methodology, unit of matching, comparison type and relation type; for output: the number of merged solutions and whether original taxonomies are preserved in the solutions.

Research limitations/implications

The main research implications of this study are threefold: (1) to enhance the understanding of the characteristics of a taxonomy alignment work; (2) to provide a novel categorization of taxonomy alignment approaches into natural language processing approach, logic-based approach and heuristic-based approach; (3) to provide a methodological guideline on the must-include characteristics for future taxonomy alignment research.

Originality/value

There is no existing comprehensive review on the alignment of “taxonomies”. Further, no other mapping survey research has discussed the comparison from a KOS perspective. Using a KOS lens is critical in understanding the broader picture of what other similar systems of organizations are, and enables us to define taxonomies more precisely.

Details

Journal of Documentation, vol. 79 no. 6
Type: Research Article
ISSN: 0022-0418

Keywords

1 – 10 of over 2000