Search results

1 – 5 of 5
Article
Publication date: 15 September 2020

Shiwei Zhao, Daochun Li and Jinwu Xiang

The purpose of this study is to propose an improved design of PneuNets bending actuator which aims at obtaining larger deflection with the same magnitude of pressure. The PneuNets

Abstract

Purpose

The purpose of this study is to propose an improved design of PneuNets bending actuator which aims at obtaining larger deflection with the same magnitude of pressure. The PneuNets bending actuator shows potential application in the morphing trailing edge concept.

Design/methodology/approach

Finite element method is used to investigate the characteristics of the improved design bending actuator. Multiobjective optimal design of the PneuNets bending actuator is proposed based on the Gauss process regression models.

Findings

The maximum deflection is obtained when the height of the beams is smaller than half the height of the chambers. The spacing between chambers (beam length) has little effect on the deflection. Larger spacing could be used to reduce the actuator weight.

Originality/value

With the same pressure magnitude, the deflection of the improved design bending actuator is much larger than that of the baseline configuration. PneuNets bending actuator could increase the continuity of the aerodynamic surface compared to other actuators.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 5 July 2021

Venkatesan V., Shanmugam S. and Veerappan A.R.

This paper aims to study the influence of significant design parameters of elephant trunk soft pneumatic actuator and presents maximum optimized geometric structure of the actuator

Abstract

Purpose

This paper aims to study the influence of significant design parameters of elephant trunk soft pneumatic actuator and presents maximum optimized geometric structure of the actuator using finite element method.

Design/methodology/approach

Analysis of variance (ANOVA) is used to examine the influence of significant parameters such as wall thickness, bottom layer thickness and gap between adjacent chambers on the performance of the soft actuator. The most influencing parameter is found to be the wall thickness compared to the gap between adjacent chambers and bottom layer thickness.

Findings

The optimization of bending moment recommends a wall thickness of 1.5 mm, a gap between the adjacent channels of 1.5 mm and bottom layer thickness of 4 mm for the actuator. The theoretical expression of mechanical parameters is described.

Originality/value

The design optimization of elephant trunk shaped soft actuator with respect to bending angle and force analysis has not been investigated.

Details

World Journal of Engineering, vol. 19 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 28 April 2023

Deepak Doreswamy, Abhijay B.R., Jeane Marina D’Souza, Sachidananda H.K. and Subraya Krishna Bhat

Soft actuators using pneumatic-chamber (PneuNet)-based designs have been of interest in the area of soft robotics with scope of application in the area of biomedical assistance…

Abstract

Purpose

Soft actuators using pneumatic-chamber (PneuNet)-based designs have been of interest in the area of soft robotics with scope of application in the area of biomedical assistance and smart agriculture. Researchers have attempted to investigate multiple chambers in parallel to examine their deformation characteristics. However, there is a lacuna for investigation of the deformation characteristics of four parallel chambered soft actuators. The purpose of this study is to comprehensively investigate the different possible actuation scenarios and the resulting bending/deformation behaviours.

Design/methodology/approach

Therefore, in this study, a four-chambered PneuNet actuator is numerically investigated to evaluate the effects of pressurization scenarios and pressure levels on its performance, operating reaching and working volume.

Findings

The results of this study revealed that two-adjacent chamber equal pressurization and three-chamber pressurizations result in increased bending. However, two-opposite chamber pressurization reduces the bending angle with pressure levels in the lower pressure chamber. The maximum bending angle of 97° was achieved for single-chamber pressurization of 300 kPa. The two-adjacent chamber unequal pressurization can achieve a sweeping motion in the actuator along with bending. The working volume and reaching capability analysis revealed that the actuator can reach around 71% of the dimensional operating space.

Practical implications

The results provide fundamental guidance on the output nature of motion which can be obtained under different pressurization scenarios using the four-chambered design soft actuator, thereby making it a practical guide for implementation for useful applications.

Originality/value

The comprehensive pressurization scenarios and pressure level variations reported in this study will serve as fundamental operating guidelines for any practical implementation of the four-chambered PneuNet actuator.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 2 August 2019

Dong Liu, Minghao Wang and Ming Cong

The purpose of this paper is to solve the common problems of outer phenomenon and stress concentration among pneumatic networks soft actuators.

Abstract

Purpose

The purpose of this paper is to solve the common problems of outer phenomenon and stress concentration among pneumatic networks soft actuators.

Design/methodology/approach

On the basis of imitating the caterpillar structure, the new soft actuator adopts the integral circular ladder structure instead of the traditional independent distributed structure as the air chamber. Through the comparison of several different structures, the parabolic in-wall curve is found to be fit for designing the optimal integrated chamber structure of the soft actuator. The curve function of each ladder chamber is computed based on the torque distribution model, aiming to decrease the terminal deformation. Meanwhile, the FEM analysis method is applied to establish the motion model of the integrated parabolic ladder soft actuator. The model’s accuracy, as well as structure’s deformation and stress, are verified.

Findings

Compared with the FEM data, the experimental data indicate that the new soft actuator has no obvious outer phenomenon, the maximum stress decreases and the stiffness increases. The new actuator is applied for designing a flexible gripper to grasp objects of different shapes and sizes. The gripper can grasp objects of 52.6 times its own mass.

Practical implications

The designed gripper is available for flexible production in various fields, such as capturing fruits of different sizes, soft foods or parts with complex shapes.

Originality/value

This paper proposes a new type soft actuator, which provides a solution for exploring the field of the soft robot. The problems of outer phenomenon and stress concentration are suppressed with pneumatic networks soft actuators.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 27 September 2021

Yongyao Li, Ming Cong, Dong Liu, Yu Du, Minjie Wu and Clarence W. de Silva

Rigid robotic hands are generally fast, precise and capable of exerting large forces, whereas soft robotic hands are compliant, safe and adaptive to complex environments. It is…

Abstract

Purpose

Rigid robotic hands are generally fast, precise and capable of exerting large forces, whereas soft robotic hands are compliant, safe and adaptive to complex environments. It is valuable and challenging to develop soft-rigid robotic hands that have both types of capabilities. The paper aims to address the challenge through developing a paradigm to achieve the behaviors of soft and rigid robotic hands adaptively.

Design/methodology/approach

The design principle of a two-joint finger is proposed. A kinematic model and a stiffness enhancement method are proposed and discussed. The manufacturing process for the soft-rigid finger is presented. Experiments are carried out to validate the accuracy of the kinematic model and evaluate the performance of the flexible body of the finger. Finally, a robotic hand composed of two soft-rigid fingers is fabricated to demonstrate its grasping capacities.

Findings

The kinematic model can capture the desired distal deflection and comprehensive shape accurately. The stiffness enhancement method guarantees stable grasp of the robotic hand, without sacrificing its flexibility and adaptability. The robotic hand is lightweight and practical. It can exhibit different grasping capacities.

Practical implications

It can be applied in the field of industrial grasping, where the objects are varied in materials and geometry. The hand’s inherent characteristic removes the need to detect and react to slight variations in surface geometry and makes the control strategies simple.

Originality/value

This work proposes a novel robotic hand. It possesses three distinct characteristics, i.e. high compliance, exhibiting discrete or continuous kinematics adaptively, lightweight and practical structures.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 5 of 5