Search results

1 – 10 of over 1000
Article
Publication date: 25 June 2020

Yee Ling Yap, Swee Leong Sing and Wai Yee Yeong

Soft robotics is currently a rapidly growing new field of robotics whereby the robots are fundamentally soft and elastically deformable. Fabrication of soft robots is currently…

3803

Abstract

Purpose

Soft robotics is currently a rapidly growing new field of robotics whereby the robots are fundamentally soft and elastically deformable. Fabrication of soft robots is currently challenging and highly time- and labor-intensive. Recent advancements in three-dimensional (3D) printing of soft materials and multi-materials have become the key to enable direct manufacturing of soft robots with sophisticated designs and functions. Hence, this paper aims to review the current 3D printing processes and materials for soft robotics applications, as well as the potentials of 3D printing technologies on 3D printed soft robotics.

Design/methodology/approach

The paper reviews the polymer 3D printing techniques and materials that have been used for the development of soft robotics. Current challenges to adopting 3D printing for soft robotics are also discussed. Next, the potentials of 3D printing technologies and the future outlooks of 3D printed soft robotics are presented.

Findings

This paper reviews five different 3D printing techniques and commonly used materials. The advantages and disadvantages of each technique for the soft robotic application are evaluated. The typical designs and geometries used by each technique are also summarized. There is an increasing trend of printing shape memory polymers, as well as multiple materials simultaneously using direct ink writing and material jetting techniques to produce robotics with varying stiffness values that range from intrinsically soft and highly compliant to rigid polymers. Although the recent work is done is still limited to experimentation and prototyping of 3D printed soft robotics, additive manufacturing could ultimately be used for the end-use and production of soft robotics.

Originality/value

The paper provides the current trend of how 3D printing techniques and materials are used particularly in the soft robotics application. The potentials of 3D printing technology on the soft robotic applications and the future outlooks of 3D printed soft robotics are also presented.

Details

Rapid Prototyping Journal, vol. 26 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 27 September 2021

Yongyao Li, Ming Cong, Dong Liu, Yu Du, Minjie Wu and Clarence W. de Silva

Rigid robotic hands are generally fast, precise and capable of exerting large forces, whereas soft robotic hands are compliant, safe and adaptive to complex environments. It is…

Abstract

Purpose

Rigid robotic hands are generally fast, precise and capable of exerting large forces, whereas soft robotic hands are compliant, safe and adaptive to complex environments. It is valuable and challenging to develop soft-rigid robotic hands that have both types of capabilities. The paper aims to address the challenge through developing a paradigm to achieve the behaviors of soft and rigid robotic hands adaptively.

Design/methodology/approach

The design principle of a two-joint finger is proposed. A kinematic model and a stiffness enhancement method are proposed and discussed. The manufacturing process for the soft-rigid finger is presented. Experiments are carried out to validate the accuracy of the kinematic model and evaluate the performance of the flexible body of the finger. Finally, a robotic hand composed of two soft-rigid fingers is fabricated to demonstrate its grasping capacities.

Findings

The kinematic model can capture the desired distal deflection and comprehensive shape accurately. The stiffness enhancement method guarantees stable grasp of the robotic hand, without sacrificing its flexibility and adaptability. The robotic hand is lightweight and practical. It can exhibit different grasping capacities.

Practical implications

It can be applied in the field of industrial grasping, where the objects are varied in materials and geometry. The hand’s inherent characteristic removes the need to detect and react to slight variations in surface geometry and makes the control strategies simple.

Originality/value

This work proposes a novel robotic hand. It possesses three distinct characteristics, i.e. high compliance, exhibiting discrete or continuous kinematics adaptively, lightweight and practical structures.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 5 August 2021

Erina Baynojir Joyee, Jida Huang, Ketki Mahadeo Lichade and Yayue Pan

The purpose of this study is to develop a novel approach to designing locally programmed multi-material distribution in a three-dimensional (3D) model, with the goal of producing…

Abstract

Purpose

The purpose of this study is to develop a novel approach to designing locally programmed multi-material distribution in a three-dimensional (3D) model, with the goal of producing a biomimetic robot that could mimic the locomotion of living organisms.

Design/methodology/approach

A voxelized representation is used to design the multi-material digital model and the material distribution in the model is optimized with the aims of mimicking the deflection dynamics of a real-life biological structure (i.e. inchworms) during its locomotion and achieving smooth deflection between adjacent regions. The design is validated post-fabrication by comparing the bending profiles of the printed robot with the deflection reference images of the real-life organism.

Findings

The proposed design framework in this study provides a foundation for multi-material multi-functional design for biomimicry and a wide range of applications in the manufacturing field and many other fields such as robotics and biomedical fields. The final optimized material design was 3D printed using a novel multi-material additive manufacturing method, magnetic field-assisted projection stereolithography. From the experimental tests, it was observed that the deflection curve and the deflection gradient of the printed robot within the adjacent regions of the body agreed well with the profiles taken from the real-life inchworm.

Originality/value

This paper presents a voxelized digital representation of the material distribution in printed parts, allowing spatially varied programming of material properties. The incorporation of reference images from living organisms into the design approach is a novel approach to transform image domain knowledge into the domain of engineering mechanical and material properties. Furthermore, the novel multi-material distribution design approach was validated through designing, 3D printing and prototyping an inchworm-inspired soft robot, which showed superior locomotion capability by mimicking the observed locomotion of the real inchworm.

Article
Publication date: 9 July 2021

Xinjie Wang, Yan Cheng, Huadong Zheng, Yihao Li and Caidong Wang

Currently, rehabilitation medical care is expensive, requires a large number of rehabilitation therapist and which can only limit in the fixed location. In addition, there is a…

Abstract

Purpose

Currently, rehabilitation medical care is expensive, requires a large number of rehabilitation therapist and which can only limit in the fixed location. In addition, there is a lack of research on the structure optimization and theoretical analysis of soft actuators for hand rehabilitation. In view of the problems above, this paper aims to propose a cheap, portable, wearable soft multiple joints rehabilitation glove.

Design/methodology/approach

First, this paper determined the hyperelastic constitutive model by material tensile test. Second, the soft actuator’s internal longitudinal section shape was optimized through the comparison of three diverse chamber structures. Meanwhile, the motion model of the soft actuator is established by the finite element model analysis method. Then, this paper established the constitutive model of the soft actuator according to the torque equilibrium equation and analyzed the relationship between the soft actuator’s bending angle and the input air pressure. This paper has verified that the theoretical model is correct through the soft actuator bending test. Finally, rehabilitation gloves were manufactured according to the model and the rehabilitation performance and grasping ability of gloves were verified through experiments.

Findings

The optimization results show that the internal semicircular cavity has better performance. Then, the actuator performance is better after adding the external arc structure and optimizing the physical dimension. The experimental results show that the trajectory of the actuator conforms to the mathematical model and rehabilitation gloves can meet the needs of rehabilitation treatment.

Practical implications

Rehabilitation gloves made of actuators can help patients with hand dysfunction in daily rehabilitation training. Then, it can also assist patients with some fine and complicated hand movements.

Originality/value

This paper proposes a new type of soft rehabilitation glove, which is composed of new soft actuators and adapting pieces. The new actuator is small enough to be fitted to the knuckle of the glove to move each joint of the finger.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 6 November 2023

Rezia Molfino, Francesco E. Cepolina, Emanuela Cepolina, Elvezia Maria Cepolina and Sara Cepolina

The purpose of this study is to analyze the robot trends of the next generation.

1282

Abstract

Purpose

The purpose of this study is to analyze the robot trends of the next generation.

Design/methodology/approach

This paper is divided into two sections: the key modern technology on which Europe's robotics industry has built its foundation is described. Then, the next key megatrends were analyzed.

Findings

Artificial intelligence (AI) and robotics are technologies of major importance for the development of humanity. This time is mature for the evolution of industrial and service robots. The perception of robot use has changed from threading to aiding. The cost of mass production of technological devices is decreasing, while a rich set of enabling technologies is under development. Soft mechanisms, 5G and AI have enabled us to address a wide range of new problems. Ethics should guide human behavior in addressing this newly available powerful technology in the right direction.

Originality/value

The paper describes the impact of new technology, such as AI and soft robotics. The world of work must react quickly to these epochal changes to enjoy their full benefits.

Article
Publication date: 13 June 2023

Zhiwei Jiao, Zhongyu Zhuang, Li Hu, Ce Sun, Yuan Yu and Weimin Yang

The purpose of this study was to fabricate silicone products that had different hardnesses and moduli, thus partially addressing the limitations of homogeneous materials whose…

Abstract

Purpose

The purpose of this study was to fabricate silicone products that had different hardnesses and moduli, thus partially addressing the limitations of homogeneous materials whose deformation depends on altered structure or dimensions, and to provide new dimensions for the design of silicone soft structures.

Design/methodology/approach

A soft material three-dimensional printing platform with a dual-channel printing capability was designed and built. Using the material extrusion method, material screening was first performed using single-channel printing, followed by dual-channel-regulated printing experiments on products having different hardness and modulus values.

Findings

The proportion of additives has an effect on the accuracy of the printed product. Material screening revealed that Sylgard 527 and SE 1700 could be printed without additives. The hardness and mechanical properties of products are related to the percentage in their composition of hard and soft materials. The hardness of the products could be adjusted from 26A to 42A and the Young’s modulus from 0.875 to 2.378 Mpa.

Originality/value

Existing silicone products molded by casting or printing are mostly composed of a single material, whose uniform hardness and modulus cannot meet the demand for differentiated deformation in the structure. The existing multihardness silicone material printing method has the problems of long material mixing time and slow hardness switching and complicated multi-extrusion head switching. In this study, a simple, low-cost and responsive material extrusion-based hardness programmable preparation method for silicone materials is proposed.

Details

Rapid Prototyping Journal, vol. 29 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 13 May 2022

Gabriel Dämmer, Hartmut Bauer, Rüdiger Neumann and Zoltan Major

This study aims to investigate the suitability of a multi-step prototyping strategy for producing pneumatic rotary vane actuators (RVAs) for the development of lightweight robots…

1234

Abstract

Purpose

This study aims to investigate the suitability of a multi-step prototyping strategy for producing pneumatic rotary vane actuators (RVAs) for the development of lightweight robots and actuation systems.

Design/methodology/approach

RVAs typically have cast aluminum housings and injection-molded seals that consist of hard thermoplastic cores and soft elastomeric overmolds. Using a combination of additive manufacturing (AM), computer numerical control (CNC) machining and elastomer molding, a conventionally manufactured standard RVA was replicated. The standard housing design was modified, and polymeric replicas were obtained by selective laser sintering (SLS) or PolyJet (PJ) printing and subsequent CNC milling. Using laser-sintered molds, actuator seals were replicated by overmolding laser-sintered polyamide cores with silicone (SIL) and polyurethane (PU) elastomers. The replica RVAs were subjected to a series of leakage, friction and durability experiments.

Findings

The AM-based prototyping strategy described is suitable for producing functional and reliable RVAs for research and product development. In a representative durability experiment, the RVAs in this study endured between 40,000 and 1,000,000 load cycles. Frictional torques were around 0.5 Nm, which is 10% of the theoretical torque at 6 bar and comparable to that of the standard RVA. Models and parameters are provided for describing the velocity-dependent frictional torque. Leakage experiments at 10,000 load cycles and 6 bar differential pressure showed that PJ housings exhibit lower leakage values (6.8 L/min) than laser-sintered housings (15.2 L/min), and PU seals exhibit lower values (8.0 l/min) than SIL seals (14.0 L/min). Combining PU seals with PJ housings led to an initial leakage of 0.4 L/min, which increased to only 1.2 L/min after 10,000 load cycles. Overall, the PU material used was more difficult to process but also more abrasion- and tear-resistant than the SIL elastomer.

Research limitations/implications

More work is needed to understand individual cause–effect relationships between specific design features and system behavior.

Originality/value

To date, pneumatic RVAs have been manufactured by large-scale production technologies. The absence of suitable prototyping strategies has limited the available range to fixed sizes and has thus complicated the use of RVAs in research and product development. This paper proves that functional pneumatic RVAs can be produced by using more accessible manufacturing technologies and provides the tools for prototyping of application-specific RVAs.

Details

Rapid Prototyping Journal, vol. 28 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 29 January 2024

Chang Chen, Yuandong Liang, Jiten Sun, Chen Lin and Yehao Wen

The purpose of this paper is to introduce a variable distance pneumatic gripper with embedded flexible sensors, which can effectively grasp fragile and flexible objects.

Abstract

Purpose

The purpose of this paper is to introduce a variable distance pneumatic gripper with embedded flexible sensors, which can effectively grasp fragile and flexible objects.

Design/methodology/approach

Based on the motion principle of the three-jaw chuck and the pneumatic “fast pneumatic network” (FPN), a variable distance pneumatic holder embedded with a flexible sensor is designed. A structural design plan and preparation process of a soft driver is proposed, using carbon nanotubes as filler in a polyurethane (PU) sponge. A flexible bending sensor based on carbon nanotube materials was produced. A static model of the soft driver cavity was established, and a bending simulation was performed. Based on the designed variable distance soft pneumatic gripper, a real-time monitoring and control system was developed. Combined with the developed pneumatic control system, gripping experiments on objects of different shapes and easily deformable and fragile objects were conducted.

Findings

In this paper, a variable-distance pneumatic gripper embedded with a flexible sensor was designed, and a control system for real-time monitoring and multi-terminal input was developed. Combined with the developed pneumatic control system, a measure was carried out to measure the relationship between the bending angle, output force and air pressure of the soft driver. Flexible bending sensor performance test. The gripper diameter and gripping weight were tested, and the maximum gripping diameter was determined to be 182 mm, the maximum gripping weight was approximately 900 g and the average measurement error of the bending sensor was 5.91%. Objects of different shapes and easily deformable and fragile objects were tested.

Originality/value

Based on the motion principle of the three-jaw chuck and the pneumatic FPN, a variable distance pneumatic gripper with embedded flexible sensors is proposed by using the method of layered and step-by-step preparation. The authors studied the gripper structure design, simulation analysis, prototype preparation, control system construction and experimental testing. The results show that the designed flexible pneumatic gripper with variable distance can grasp common objects.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 2 August 2019

Dong Liu, Minghao Wang and Ming Cong

The purpose of this paper is to solve the common problems of outer phenomenon and stress concentration among pneumatic networks soft actuators.

Abstract

Purpose

The purpose of this paper is to solve the common problems of outer phenomenon and stress concentration among pneumatic networks soft actuators.

Design/methodology/approach

On the basis of imitating the caterpillar structure, the new soft actuator adopts the integral circular ladder structure instead of the traditional independent distributed structure as the air chamber. Through the comparison of several different structures, the parabolic in-wall curve is found to be fit for designing the optimal integrated chamber structure of the soft actuator. The curve function of each ladder chamber is computed based on the torque distribution model, aiming to decrease the terminal deformation. Meanwhile, the FEM analysis method is applied to establish the motion model of the integrated parabolic ladder soft actuator. The model’s accuracy, as well as structure’s deformation and stress, are verified.

Findings

Compared with the FEM data, the experimental data indicate that the new soft actuator has no obvious outer phenomenon, the maximum stress decreases and the stiffness increases. The new actuator is applied for designing a flexible gripper to grasp objects of different shapes and sizes. The gripper can grasp objects of 52.6 times its own mass.

Practical implications

The designed gripper is available for flexible production in various fields, such as capturing fruits of different sizes, soft foods or parts with complex shapes.

Originality/value

This paper proposes a new type soft actuator, which provides a solution for exploring the field of the soft robot. The problems of outer phenomenon and stress concentration are suppressed with pneumatic networks soft actuators.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 18 January 2022

Abrar Malik, Mir Irfan Ul Haq, Ankush Raina and Kapil Gupta

Environmental degradation has emerged as one of the major limitations of industrial revolution and has led to an increased focus towards developing sustainable strategies and…

1796

Abstract

Purpose

Environmental degradation has emerged as one of the major limitations of industrial revolution and has led to an increased focus towards developing sustainable strategies and techniques. This paper aims to highlight the sustainability aspects of three-dimensional (3D) printing technology that helps towards a better implementation of Industry 4.0. It also aims to provide a brief picture of relationships between 3D printing, Industry 4.0 and sustainability. The major goal is to facilitate the researchers, scholars, engineers and recommend further research, development and innovations in the field.

Design/methodology/approach

The various enabling factors for implementation of Industry 4.0 are discussed in detail. Some barriers to incorporation of 3D Printing, its applications areas and global market scenario are also discussed. A through literature review has been done to study the detailed relationships between 3D printing, Industry 4.0 and sustainability.

Findings

The technological benefits of 3D printing are many such as weight savings, waste minimization and energy savings. Further, the production of new 3D printable materials with improved features helps in reducing the wastage of material during the process. 3D printing if used at a large scale would help industries to implement the concept of Industry 4.0.

Originality/value

This paper focuses on discussing technological revolution under Industry 4.0 and incorporates 3D printing-type technologies that largely change the product manufacturing scenario. The interrelationships between 3D printing, Industry 4.0 and sustainability have been discussed.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of over 1000