Search results

1 – 10 of 156
Article
Publication date: 31 July 2023

Chong Xu, Pengbo Wang, Fan Yang, Shaohua Wang, Junping Cao and Xin Wang

This paper aims at building a discharge model for the power cable bellows based on plasma energy deposition and analyzing the discharge ablation problem.

Abstract

Purpose

This paper aims at building a discharge model for the power cable bellows based on plasma energy deposition and analyzing the discharge ablation problem.

Design/methodology/approach

Aiming at the multiphysical mechanism of the discharge ablation process, a multiphysical field model based on plasma energy deposition is established to analyze the discharge characteristics of the power cable bellows. The electrostatic field, plasma characteristics, energy deposition and temperature field are analyzed. The discharge experiment is also carried out for result validation.

Findings

The physical mechanism of the bellows ablative effect caused by partial discharge is studied. The results show that the electric field intensity between the aluminum sheath and the buffer layer easily exceeds the pressure resistance value of air breakdown. On the plasma surface of the buffer layer, the electron density is about 4 × 1,019/m3, and the average temperature of electrons is about 3.5 eV. The energy deposition analysis using the Monte Carlo method shows that the electron range in the plasma is very short. The release will complete within 10 nm, and it only takes 0.1 s to increase the maximum temperature of the buffer layer to more than 1,000 K, thus causing various thermal effects.

Originality/value

Its physical process involves the distortion of electric field, formation of plasma, energy deposition of electrons, and abrupt change of temperature field.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 February 2024

Chinkle Kaur and Jasleen Kaur

Millets are ancient grains, following wheat, that have been a fundamental source of human sustenance. These are nutrient-rich small-seeded grains that have gained prominence and…

Abstract

Purpose

Millets are ancient grains, following wheat, that have been a fundamental source of human sustenance. These are nutrient-rich small-seeded grains that have gained prominence and admiration globally due to their super resilience in diverse climates and significant nutritional benefits. As millets are renowned for their nutritional richness, the demand for millet-based products increases. Hence, this paper aims in identifying the growing need for innovative processing techniques that not only preserve their nutritional content but also extend their shelf life.

Design/methodology/approach

In traditional times, heat was the only means of cooking and processing of the foods, but the amount of damage they used to cause to the sensorial and nutritional properties was huge. Millets’ sensitivity toward heat poses a challenge, as their composition is susceptible to disruption during various heat treatments and manufacturing processes. To cater to this drawback while ensuring the prolonged shelf life and nutrient preservation, various innovative approaches such as cold plasma, infrared technology and high hydrostatic pressure (HPP) processing are being widely used. These new methodologies aim on inactivating the microorganisms that have been developed within the food, providing the unprocessed, raw and natural form of nutrients in food products.

Findings

Among these approaches, nonthermal technology has emerged as a key player that prioritizes brief treatment periods and avoids the use of high temperatures. Nonthermal techniques (cold plasma, infrared radiation, HPP processing, ultra-sonication and pulsed electric field) facilitate the conservation of millet’s nutritional integrity by minimizing the degradation of heat-sensitive nutrients like vitamins and antioxidants. Acknowledging the potential applications and processing efficiency of nonthermal techniques, the food industry has embarked on substantial investments in this technology. The present study provides an in-depth exploration of the array of nonthermal technologies used in the food industry and their effects on the physical and chemical composition of diverse millet varieties.

Originality/value

Nonthermal techniques, compared to conventional thermal methods, are environmentally sound processes that contribute to energy conservation. However, these conveniences are accompanied by challenges, and this review not only elucidates these challenges but also focuses on the future implications of nonthermal techniques.

Article
Publication date: 4 December 2023

Chandan Kumawat, Bhupendra Kumar Sharma, Taseer Muhammad and Liaqat Ali

The purpose of this study is to determine the impact of two-phase power law nanofluid on a curved arterial blood flow under the presence of ovelapped stenosis. Over the past…

Abstract

Purpose

The purpose of this study is to determine the impact of two-phase power law nanofluid on a curved arterial blood flow under the presence of ovelapped stenosis. Over the past couple of decades, the percentage of deaths associated with blood vessel diseases has risen sharply to nearly one third of all fatalities. For vascular disease to be stopped in its tracks, it is essential to understand the vascular geometry and blood flow within the artery. In recent scenarios, because of higher thermal properties and the ability to move across stenosis and tumor cells, nanoparticles are becoming a more common and effective approach in treating cardiovascular diseases and cancer cells.

Design/methodology/approach

The present mathematical study investigates the blood flow behavior in the overlapped stenosed curved artery with cylinder shape catheter. The induced magnetic field and entropy generation for blood flow in the presence of a heat source, magnetic field and nanoparticle (Fe3O4) have been analyzed numerically. Blood is considered in artery as two-phases: core and plasma region. Power-law fluid has been considered for core region fluid, whereas Newtonian fluid is considered in the plasma region. Strongly implicit Stone’s method has been considered to solve the system of nonlinear partial differential equations (PDE’s) with 10–6 tolerance error.

Findings

The influence of various parameters has been discussed graphically. This study concludes that arterial curvature increases the probability of atherosclerosis deposition, while using an external heating source flow temperature and entropy production. In addition, if the thermal treatment procedure is carried out inside a magnetic field, it will aid in controlling blood flow velocity.

Originality/value

The findings of this computational analysis hold great significance for clinical researchers and biologists, as they offer the ability to anticipate the occurrence of endothelial cell injury and plaque accumulation in curved arteries with specific wall shear stress patterns. Consequently, these insights may contribute to the potential alleviation of the severity of these illnesses. Furthermore, the application of nanoparticles and external heat sources in the discipline of blood circulation has potential in the medically healing of illness conditions such as stenosis, cancer cells and muscular discomfort through the usage of beneficial effects.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 October 2023

Vipin Gupta and M.S. Barak

This study aims to examine the impacts of higher memory dependencies on a novel semiconductor material that exhibits generalized photo-piezo-thermo-elastic properties…

Abstract

Purpose

This study aims to examine the impacts of higher memory dependencies on a novel semiconductor material that exhibits generalized photo-piezo-thermo-elastic properties. Specifically, the research focuses on analyzing the behavior of the semiconductor under three distinct temperature models.

Design/methodology/approach

The study assumes a homogeneous and orthotropic piezo-semiconductor medium during photo-thermal excitation. The field equations have been devised to encompass higher order parameters, temporal delays and a specifically tailored kernel function to address the problem. The eigenmode technique is used to solve these equations and derive analytical expressions.

Findings

The research presents graphical representations of the physical field distribution across different temperatures, higher order plasma heat conduction models and time. The results reveal that the amplitude of the distribution profile is markedly affected by factors such as the memory effect, time, conductive temperature and spatial coordinates. These factors cannot be overlooked in the analysis and design of the semiconductor.

Research limitations/implications

Specific cases are also discussed in detail, offering the potential to advance the creation of precise models and facilitate future simulations.

Practical implications

The research offers valuable information on the physical field distribution across various temperatures, allowing engineers and designers to optimize the design of semiconductor devices. Understanding the impact of memory effect, time, conductive temperature and spatial coordinates enables device performance and efficiency improvement.

Originality/value

This manuscript is the result of the joint efforts of the authors, who independently initiated and contributed equally to this study.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 September 2023

Shamima Khatoon and Gufran Ahmad

The hygroscopic properties of 3D-printed filaments and moisture absorption itself during the process result in dimensional inaccuracy, particularly for nozzle movement along the…

Abstract

Purpose

The hygroscopic properties of 3D-printed filaments and moisture absorption itself during the process result in dimensional inaccuracy, particularly for nozzle movement along the x-axis and for micro-scale features. In view of that, this study aims to analyze in depth the dimensional errors and deviations of the fused filament fabrication (FFF)/fused deposition modeling (FDM) 3D-printed micropillars (MPs) from the reference values. A detailed analysis into the variability in printed dimensions below 1 mm in width without any deformations in the printed shape of the designed features, for challenging filaments like polymethyl methacrylate (PMMA) has been done. The study also explores whether the printed shape retains the designed structure.

Design/methodology/approach

A reference model for MPs of width 800 µm and height 2,000 µm is selected to generate a g-code model after pre-processing of slicing and meshing parameters for 3D printing of micro-scale structure with defined boundaries. Three SETs, SET-A, SET-B and SET-C, for nozzle diameter of 0.2 mm, 0.25 mm and 0.3 mm, respectively, have been prepared. The SETs containing the MPs were fabricated with the spacing (S) of 2,000 µm, 3,200 µm and 4,000 µm along the print head x-axis. The MPs were measured by taking three consecutive measurements (top, bottom and middle) for the width and one for the height.

Findings

The prominent highlight of this study is the successful FFF/FDM 3D printing of thin features (<1mm) without any deformation. The mathematical analysis of the variance of the optical microscopy measurements concluded that printed dimensions for micropillar widths did not vary significantly, retaining more than 65% of the recording within the first standard deviation (SD) (±1 s). The minimum value of SD is obtained from the samples of SET-B, that is, 31.96 µm and 35.865 µm, for height and width, respectively. The %RE for SET-B samples is 5.09% for S = 2,000µm, 3.86% for S = 3,200µm and 1.09% for S = 4,000µm. The error percentage is so small that it could be easily compensated by redesigning.

Research limitations/implications

The study does not cover other 3D printing techniques of additive manufacturing like stereolithography, digital light processing and material jetting.

Practical implications

The presented study can be potentially implemented for the rapid prototyping of microfluidics mixer, bioseparator and lab-on-chip devices, both for membrane-free bioseparation based on microfiltration, plasma extraction from whole blood, size-selection trapping of unwanted blood cells, and also for membrane-based plasma extraction that requires supporting microstructures. Our developed process may prove to be far more economical than the other existing techniques for such applications.

Originality/value

For the first time, this work presents a comprehensive analysis of the fabrication of micropillars using FDM/FFF 3D printing and PMMA in filament form. The primary focus of the study is to minimize the dimensional inaccuracies in the 3D printed devices containing thin features, especially in the area of biomedical engineering, by delivering benefits from the choice of the parameters. Thus, on the basis of errors and deviations, a thorough comparison of the three SETs of the fabricated micropillars has been done.

Article
Publication date: 15 December 2023

Muhammad Arif Mahmood, Chioibasu Diana, Uzair Sajjad, Sabin Mihai, Ion Tiseanu and Andrei C. Popescu

Porosity is a commonly analyzed defect in the laser-based additive manufacturing processes owing to the enormous thermal gradient caused by repeated melting and solidification…

Abstract

Purpose

Porosity is a commonly analyzed defect in the laser-based additive manufacturing processes owing to the enormous thermal gradient caused by repeated melting and solidification. Currently, the porosity estimation is limited to powder bed fusion. The porosity estimation needs to be explored in the laser melting deposition (LMD) process, particularly analytical models that provide cost- and time-effective solutions compared to finite element analysis. For this purpose, this study aims to formulate two mathematical models for deposited layer dimensions and corresponding porosity in the LMD process.

Design/methodology/approach

In this study, analytical models have been proposed. Initially, deposited layer dimensions, including layer height, width and depth, were calculated based on the operating parameters. These outputs were introduced in the second model to estimate the part porosity. The models were validated with experimental data for Ti6Al4V depositions on Ti6Al4V substrate. A calibration curve (CC) was also developed for Ti6Al4V material and characterized using X-ray computed tomography. The models were also validated with the experimental results adopted from literature. The validated models were linked with the deep neural network (DNN) for its training and testing using a total of 6,703 computations with 1,500 iterations. Here, laser power, laser scanning speed and powder feeding rate were selected inputs, whereas porosity was set as an output.

Findings

The computations indicate that owing to the simultaneous inclusion of powder particulates, the powder elements use a substantial percentage of the laser beam energy for their melting, resulting in laser beam energy attenuation and reducing thermal value at the substrate. The primary operating parameters are directly correlated with the number of layers and total height in CC. Through X-ray computed tomography analyses, the number of layers showed a straightforward correlation with mean sphericity, while a converse relation was identified with the number, mean volume and mean diameter of pores. DNN and analytical models showed 2%–3% and 7%–9% mean absolute deviations, respectively, compared to the experimental results.

Originality/value

This research provides a unique solution for LMD porosity estimation by linking the developed analytical computational models with artificial neural networking. The presented framework predicts the porosity in the LMD-ed parts efficiently.

Article
Publication date: 14 August 2023

Sohit Jatain, Sunita Deswal and Kapil Kumar Kalkal

The purpose of this paper is to establish a two-dimensional model of Green–Lindsay theory for micropolar magneto-thermoelastic medium to study the photothermal effect. The model…

Abstract

Purpose

The purpose of this paper is to establish a two-dimensional model of Green–Lindsay theory for micropolar magneto-thermoelastic medium to study the photothermal effect. The model is used to study the coupling between elastic waves and plasma waves generated due to thermal changes in a micropolar elastic medium.

Design/methodology/approach

Normal mode analysis is used to obtain the analytical solutions of the governing equations.

Findings

Effects of magnetic field, micropolarity, photothermal and time are highlighted on various physical fields such as stresses, temperature, displacement and carrier density. The above physical fields also conform to the boundary conditions. It is further observed that all the physical quantities become zero outside some bounded region of space, thus confirming the notion of generalized theory of thermoelasticity.

Originality/value

The values of physical fields are computed numerically using MATLAB software considering material constants for silicon. Furthermore, the effects are depicted graphically and analyzed accordingly. The study is valuable for the analysis of thermoelastic problems involving magnetic field, micropolarity and elastic deformations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 February 2024

Dongsheng Wang, Xiaohan Sun, Yingchang Jiang, Xueting Chang and Xin Yonglei

Stainless-clad bimetallic steels (SCBS) are widely investigated in some extremely environmental applications areas, such as polar sailing area and tropical oil and gas platforms…

Abstract

Purpose

Stainless-clad bimetallic steels (SCBS) are widely investigated in some extremely environmental applications areas, such as polar sailing area and tropical oil and gas platforms areas, because of their excellent anticorrosion performance and relatively lower production costs. However, the properties of SCBS, including the mechanical strength, weldability and the anticorrosion behavior, have a direct relation with the manufacturing process and can affect their practical applications. This paper aims to review the application and the properties requirements of SCBS in marine environments to promote the application of this new material in more fields.

Design/methodology/approach

In this paper, the manufacturing process, welding and corrosion-resistant properties of SCBS were introduced systematically by reviewing the related literatures, and some results of the authors’ research group were also introduced briefly.

Findings

Different preparation methods, such as rolling composite, casting rolling composite, explosive composite, laser cladding and plasma arc cladding, as well as the process parameters, including the vacuum degree, rolling temperature, rolling reduction ratio, volume ratios of liquid to solid, explosive ratio and the heat treatment, influenced a lot on the properties of the SCBS through changing the interface microstructures. Otherwise, the variations in rolling temperature, pass, reduction and the grain size of clad steel also brought the dissimilarities of the mechanical properties, microhardness, bonding strength and toughness. Another two new processes, clad teeming method and interlayer explosive welding, deserve more attention because of their excellent microstructure control ability. The superior corrosion resistance of SCBS can alleviate the corrosion problem in the marine environment and prolong the service life of the equipment, but the phenomenon of galvanic corrosion should be noted as much as possible. The high dilution rate, welding process specifications and heat treatment can weaken the intergranular corrosion resistance in the weld area.

Originality/value

This paper summarizes the application of SCBS in marine environments and provides an overview and reference for the research of stainless-clad bimetallic steel.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 13 December 2023

Zhenyu Ma, Yupeng Zhang, Xuguang An, Jing Zhang, Qingquan Kong, Hui Wang, Weitang Yao and Qingyuan Wang

The purpose of this study is to investigate the effect of nano ZrC particles on the mechanical and electrochemical corrosion properties of FeCrAl alloys, providing a beneficial…

Abstract

Purpose

The purpose of this study is to investigate the effect of nano ZrC particles on the mechanical and electrochemical corrosion properties of FeCrAl alloys, providing a beneficial reference basis for the development of high-performance carbide reinforced FeCrAl alloys with good mechanical and corrosion properties in the future.

Design/methodology/approach

Nano ZrC reinforced FeCrAl alloys were prepared by mechanical alloying and spark plasma sintering. Phases composition, tensile fractography, corrosion morphology and chemical composition of nano ZrC reinforced FeCrAl alloys were analyzed by X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy, respectively. Microhardness and tensile properties of nano ZrC reinforced FeCrAl alloys were investigated by mechanical testing machine and Vickers hardness tester. Electrochemical corrosion properties of nano ZrC reinforced FeCrAl alloys were investigated by electrochemical workstation in 3.5 wt.% NaCl solution.

Findings

The results showed that addition of nano ZrC can effectively improve the mechanical and corrosion properties. However, excessive nano ZrC could decrease the mechanical properties and reduce the corrosion resistance. In all the FeCrAl alloys, FeCrAl–0.6 wt.% ZrC alloy exhibits the optimum mechanical properties with an ultimate tensile strength, elongation and hardness of 990.7 MPa, 24.1% and 335.8 HV1, respectively, and FeCrAl–0.2 wt.% ZrC alloy has a lower corrosion potential (−0.179 V) and corrosion current density (2.099 µA/cm2) and larger pitting potential (0.497 V) than other FeCrAl–ZrC alloys, showing a better corrosion resistance.

Originality/value

Adding proper nano ZrC particles can effectively improve the mechanical and corrosion properties, while the excessive nano ZrC is harmful to the mechanical and corrosion properties of FeCrAl alloys, which provides an instruction to develop high-performance FeCrAl cladding materials.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 14 November 2023

Khaled Hallak, Fulbert Baudoin, Virginie Griseri, Florian Bugarin, Stephane Segonds, Severine Le Roy and Gilbert Teyssedre

The purpose of this paper is to optimize and improve a bipolar charge transport (BCT) model used to simulate charge dynamics in insulating polymer materials, specifically…

Abstract

Purpose

The purpose of this paper is to optimize and improve a bipolar charge transport (BCT) model used to simulate charge dynamics in insulating polymer materials, specifically low-density polyethylene (LDPE).

Design/methodology/approach

An optimization algorithm is applied to optimize the BCT model by comparing the model outputs with experimental data obtained using two kinds of measurements: space charge distribution using the pulsed electroacoustic (PEA) method and current measurements in nonstationary conditions.

Findings

The study provides an optimal set of parameters that offers a good correlation between model outputs and several experiments conducted under varying applied fields. The study evaluates the quantity of charges remaining inside the dielectric even after 24 h of short circuit. Moreover, the effects of increasing the electric field on charge trapping and detrapping rates are addressed.

Research limitations/implications

This study only examined experiments with different applied electric fields, and thus the obtained parameters may not suit the experimental outputs if the experimental temperature varies. Further improvement may be achieved by introducing additional experiments or another source of measurements.

Originality/value

This work provides a unique set of optimal parameters that best match both current and charge density measurements for a BCT model in LDPE and demonstrates the use of trust region reflective algorithm for parameter optimization. The study also attempts to evaluate the equations used to describe charge trapping and detrapping phenomena, providing a deeper understanding of the physics behind the model.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Access

Year

Last 6 months (156)

Content type

Article (156)
1 – 10 of 156