Search results

1 – 10 of 428
Open Access
Article
Publication date: 22 April 2022

Marja G. Bertrand and Immaculate K. Namukasa

Certain researchers have expressed concerns about inequitable discipline representations in an integrated STEM/STEAM (science, technology, engineering, arts and mathematics) unit…

7579

Abstract

Purpose

Certain researchers have expressed concerns about inequitable discipline representations in an integrated STEM/STEAM (science, technology, engineering, arts and mathematics) unit that may limit what students gain in terms of depth of knowledge and understanding. To address this concern, the authors investigate the stages of integrated teaching units to explore the ways in which STEAM programs can provide students with a deeper learning experience in mathematics. This paper addresses the following question: what learning stages promote a deeper understanding and more meaningful learning experience of mathematics in the context of STEAM education?

Design/methodology/approach

The authors carried out a qualitative case study and collected the following data: interviews, lesson observations and analyses of curriculum documents. The authors took a sample of four different STEAM programs in Ontario, Canada: two at nonprofit organizations and two at in-school research sites.

Findings

The findings contribute to a curriculum and instructional model which ensures that mathematics curriculum expectations are more explicit and targeted, in both the learning expectations and assessment criteria, and essential to the STEAM learning tasks. The findings have implications for planning and teaching STEAM programs.

Originality/value

The authors derived four stages of the STEAM Maker unit or lesson from the analysis of data collected from the four sites, which the authors present in this paper. These four stages offer a model for a more robust integrated curriculum focusing on a deeper understanding of mathematics curriculum content.

Details

Journal of Research in Innovative Teaching & Learning, vol. 16 no. 2
Type: Research Article
ISSN: 2397-7604

Keywords

Article
Publication date: 18 September 2023

Yong Qin and Haidong Yu

This paper aims to provide a better understanding of the challenges and potential solutions in Visual Simultaneous Localization and Mapping (SLAM), laying the foundation for its…

Abstract

Purpose

This paper aims to provide a better understanding of the challenges and potential solutions in Visual Simultaneous Localization and Mapping (SLAM), laying the foundation for its applications in autonomous navigation, intelligent driving and other related domains.

Design/methodology/approach

In analyzing the latest research, the review presents representative achievements, including methods to enhance efficiency, robustness and accuracy. Additionally, the review provides insights into the future development direction of Visual SLAM, emphasizing the importance of improving system robustness when dealing with dynamic environments. The research methodology of this review involves a literature review and data set analysis, enabling a comprehensive understanding of the current status and prospects in the field of Visual SLAM.

Findings

This review aims to comprehensively evaluate the latest advances and challenges in the field of Visual SLAM. By collecting and analyzing relevant research papers and classic data sets, it reveals the current issues faced by Visual SLAM in complex environments and proposes potential solutions. The review begins by introducing the fundamental principles and application areas of Visual SLAM, followed by an in-depth discussion of the challenges encountered when dealing with dynamic objects and complex environments. To enhance the performance of SLAM algorithms, researchers have made progress by integrating different sensor modalities, improving feature extraction and incorporating deep learning techniques, driving advancements in the field.

Originality/value

To the best of the authors’ knowledge, the originality of this review lies in its in-depth analysis of current research hotspots and predictions for future development, providing valuable references for researchers in this field.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 11 January 2023

Quy Dong To and Guy Bonnet

The purpose of this paper is to solve the local problem involving strong contrast heterogeneous conductive material, with application to gas-filled porous media with both perfect…

Abstract

Purpose

The purpose of this paper is to solve the local problem involving strong contrast heterogeneous conductive material, with application to gas-filled porous media with both perfect and imperfect Kapitza boundary conditions at the bi-material interface. The effective parameters like the dynamic conductivity and the thermal permeability in the acoustics of porous media are also derived from the cell solution.

Design/methodology/approach

The Fourier transform method is used to solve frequency-dependent heat transfer problems. The periodic Lippmann–Schwinger integral equation in Fourier space with source term is first formulated using discrete Green operators and modified wavevectors, which can then be solved by iteration schemes.

Findings

Numerical examples show that the schemes converge fast and yield accurate results when compared with analytical solution for benchmark problems.

Originality/value

The formulation of the method is constructed using static and dynamic Green operators and can be applied to pixelized microstructure issued from tomography images.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 July 2023

Ruochen Zeng, Jonathan J.S. Shi, Chao Wang and Tao Lu

As laser scanning technology becomes readily available and affordable, there is an increasing demand of using point cloud data collected from a laser scanner to create as-built…

Abstract

Purpose

As laser scanning technology becomes readily available and affordable, there is an increasing demand of using point cloud data collected from a laser scanner to create as-built building information modeling (BIM) models for quality assessment, schedule control and energy performance within construction projects. To enhance the as-built modeling efficiency, this study explores an integrated system, called Auto-Scan-To-BIM (ASTB), with an aim to automatically generate a complete Industry Foundation Classes (IFC) model consisted of the 3D building elements for the given building based on its point cloud without requiring additional modeling tools.

Design/methodology/approach

ASTB has been developed with three function modules. Taking the scanned point data as input, Module 1 is built on the basis of the widely used region segmentation methodology and expanded with enhanced plane boundary line detection methods and corner recalibration algorithms. Then, Module 2 is developed with a domain knowledge-based heuristic method to analyze the features of the recognized planes, to associate them with corresponding building elements and to create BIM models. Based on the spatial relationships between these building elements, Module 3 generates a complete IFC model for the entire project compatible with any BIM software.

Findings

A case study validated the ASTB with an application with five common types of building elements (e.g. wall, floor, ceiling, window and door).

Originality/value

First, an integrated system, ASTB, is developed to generate a BIM model from scanned point cloud data without using additional modeling tools. Second, an enhanced plane boundary line detection method and a corner recalibration algorithm are developed in ASTB with high accuracy in obtaining the true surface planes. At last, the research contributes to develop a module, which can automatically convert the identified building elements into an IFC format based on the geometry and spatial relationships of each plan.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 3 November 2023

Arun G. Nair, Tide P.S. and Bhasi A.B.

The mixing of fuel and air plays a pivotal role in enhancing combustion in supersonic regime. Proper mixing stabilizes the flame and prevents blow-off. Blow-off is due to the…

Abstract

Purpose

The mixing of fuel and air plays a pivotal role in enhancing combustion in supersonic regime. Proper mixing stabilizes the flame and prevents blow-off. Blow-off is due to the shorter residence time of fuel and air in the combustor, as the flow is in supersonic regime. The flame is initiated in the local subsonic region created using a flameholder within the supersonic combustor. This study aims to design an effective flameholder which increases the residence time of fuel in the combustor allowing proper combustion preventing blow-off and other instabilities.

Design/methodology/approach

The geometry of the strut-based flameholder is altered in the present study to induce a streamwise motion of the fluid downstream of the strut. The streamwise motion of the fluid is initiated by the ramps and grooves of the strut geometry. The numerical simulations were carried out using ANSYS Fluent and are validated against the available experimental and numerical results of cold flow with hydrogen injection using plain strut as the flameholder. In the present study, numerical investigations are performed to analyse the effect on hydrogen injection in strut-based flameholders with ramps and converging grooves using Reynolds-averaged Navier–Stokes equation coupled with Menter’s shear stress transport k-ω turbulence model. The analysis is done to determine the effect of geometrical parameters and flow parameter on the flow structures near the base of the strut where thorough mixing takes place. The geometrical parameters under consideration include the ramp length, groove convergence angle, depth of the groove, groove compression angle and the Mach number. Two different strut configurations, namely, symmetric and asymmetric struts were also studied.

Findings

Higher turbulence and complex flow structures are visible in asymmetric strut configuration which develops better mixing of hydrogen and air compared to symmetric strut configuration. The variation in the geometric parameters develop changes in the fluid motion downstream of the strut. The fluid passing through the converging grooves gets decelerated thereby reducing the Mach number by 20% near the base of the strut compared to the straight grooved strut. The shorter ramps are found to be more effective, as the pressure variation in lateral direction is carried along the strut walls downstream of the strut increasing the streamwise motion of the fluid. The decrease in the depth of the groove increases the recirculation zone downstream of the strut. Moreover, the increase in the groove compression angle also increases the turbulence near the base of the strut where the fuel is injected. Variation in the injection port location increases the mixing performance of the combustor by 25%. The turbulence of the fuel jet stream is considerably changed by the increase in the injection velocity. However, the change in the flow field properties within the flow domain is marginal. The increase in fuel mass flow rate brings about considerable change in the flow field inducing stronger shock structures.

Originality/value

The present study identifies the optimum geometry of the strut-based flameholder with ramps and converging grooves. The reaction flow modelling may be performed on the strut geometry incorporating the design features obtained in the present study.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 29 December 2023

Noah Ray and Il Yong Kim

Fiber reinforced additive manufacturing (FRAM) is an emerging technology that combines additive manufacturing and composite materials. As a result, design freedom offered by the…

Abstract

Purpose

Fiber reinforced additive manufacturing (FRAM) is an emerging technology that combines additive manufacturing and composite materials. As a result, design freedom offered by the manufacturing process can be leveraged in design optimization. The purpose of the study is to propose a novel method that improves structural performance by optimizing 3D print orientation of FRAM components.

Design/methodology/approach

This work proposes a two-part design optimization method that optimizes 3D global print orientation and topology of a component to improve a structural objective function. The method considers two classes of design variables: (1) print orientation design variables and (2) density-based topology design variables. Print orientation design variables determine a unique 3D print orientation to influence anisotropic material properties. Topology optimization determines an optimal distribution of material within the optimized print orientation.

Findings

Two academic examples are used to demonstrate basic behavior of the method in tension and shear. Print orientation and sequential topology optimization improve structural compliance by 90% and 58%, respectively. An industry-level example, an aerospace component, is optimized. The proposed method is used to achieve an 11% and 15% reduction of structural compliance compared to alternative FRAM designs. In addition, compliance is reduced by 43% compared to an equal-mass aluminum design.

Originality/value

Current research surrounding FRAM focuses on the manufacturing process and neglects opportunities to leverage design freedom provided by FRAM. Previous FRAM optimization methods only optimize fiber orientation within a 2D plane and do not establish an optimized 3D print orientation, neglecting exploration of the entire orientation design space.

Open Access
Article
Publication date: 7 March 2023

Solomon O. Obadimu and Kyriakos I. Kourousis

Honeycombs enjoy wide use in various engineering applications. The emergence of additive manufacturing (AM) as a method of customisable of parts has enabled the reinvention of the…

1181

Abstract

Purpose

Honeycombs enjoy wide use in various engineering applications. The emergence of additive manufacturing (AM) as a method of customisable of parts has enabled the reinvention of the honeycomb structure. However, research on in-plane compressive performance of both classical and new types of honeycombs fabricated via AM is still ongoing. Several important findings have emerged over the past years, with significance for the AM community and a review is considered necessary and timely. This paper aims to review the in-plane compressive performance of AM honeycomb structures.

Design/methodology/approach

This paper provides a state-of-the-art review focussing on the in-plane compressive performance of AM honeycomb structures, covering both polymers and metals. Recently published studies, over the past six years, have been reviewed under the specific theme of in-plane compression properties.

Findings

The key factors influencing the AM honeycombs' in-plane compressive performance are identified, namely the geometrical features, such as topology shape, cell wall thickness, cell size and manufacturing parameters. Moreover, the techniques and configurations commonly used for geometry optimisation toward improving mechanical performance are discussed in detail. Current AM limitations applicable to AM honeycomb structures are identified and potential future directions are also discussed in this paper.

Originality/value

This work evaluates critically the primary results and findings from the published research literature associated with the in-plane compressive mechanical performance of AM honeycombs.

Details

International Journal of Structural Integrity, vol. 14 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 25 January 2023

Ramesh Chand, Vishal S. Sharma, Rajeev Trehan and Munish Kumar Gupta

The purpose of this study is to find the best geometries among the cylindrical, enamel and honeycomb geometries based upon the mechanical properties (tensile test, compression…

Abstract

Purpose

The purpose of this study is to find the best geometries among the cylindrical, enamel and honeycomb geometries based upon the mechanical properties (tensile test, compression test and shear test). Further this obtained geometry could be used to fabricate products like exoskeleton and its supporting members.

Design/methodology/approach

The present research focuses on the mechanical testing of cylindrical, enamel and honeycomb-shaped parts fabricated through multi-jet printing (MJP) process with a wall thickness of 0.26, 0.33, 0.4 and 0.66 mm. The polymer specimens (for tensile, compression and shear tests) were fabricated using a multi-jet fusion process. The experimental results were compared with the numerical modelling. Finally, the optimal geometry was obtained, and the influence of wall thicknesses on various mechanical properties (tensile, compression and shear) was studied.

Findings

In comparison to cylindrical, enamel structures the honeycomb structures required less time to fabricate and had lower tensile, compressive and shear strengths. The most efficient geometry for fully functional parts where tensile, compressive and shear forces are present during application – cylindrical geometry is preferred followed by enamel, and then honeycomb. It was found that as the wall thickness of various geometries was increased, their ability to withstand tensile, compressive and shear loads also enhanced. The enamel shape structure exhibits greater strain energy storage capacity than other shape structures for compressive loads, and the strength to resist the compressive load will be lower. In the case of cylindrical geometries for tensile loading, the resisting area toward the loading will be higher in comparison to honeycomb- and enamel-based structures. At the same time, the ability to store the stain energy is less. The results of the tensile, compression and shear load finite element analysis using ANSYS are in agreement with those of the experiments.

Originality/value

From the insight of literature review, it is found that a wide range of work is done on fused deposition modeling (FDM) process. But in comparison to FDM, the MJP provide the better dimensional accuracy and surface properties (Lee et al., 2020). Therefore, it is observed that past research works not incorporated the effect of wall thickness of the embedded geometries on mechanical properties of the part fabricated on MJP (Gibson, n.d.). Hence, in this work, effect of wall thickness on tensile, compression and shear strength is considered as the main factor for the honeycomb, enamel and cylindrical geometries.

Article
Publication date: 27 April 2023

Wanderson Ferreira dos Santos, Ayrton Ribeiro Ferreira and Sergio Persival Baroncini Proença

The present paper aims to explore a computational homogenisation procedure to investigate the full geometric representation of yield surfaces for isotropic porous ductile media…

Abstract

Purpose

The present paper aims to explore a computational homogenisation procedure to investigate the full geometric representation of yield surfaces for isotropic porous ductile media. The effects of cell morphology and imposed boundary conditions are assessed. The sensitivity of the yield surfaces to the Lode angle is also investigated in detail.

Design/methodology/approach

The microscale of the material is modelled by the concept of Representative Volume Element (RVE) or unit cell, which is numerically simulated through three-dimensional finite element analyses. Numerous loading conditions are considered to create complete yield surfaces encompassing high, intermediate and low triaxialities. The influence of cell morphology on the yield surfaces is assessed considering a spherical cell with spherical void and a cubic RVE with spherical void, both under uniform strain boundary condition. The use of spherical cell is interesting as preferential directions in the effective behaviour are avoided. The periodic boundary condition, which favours strain localization, is imposed on the cubic RVE to compare the results. Small strains are assumed and the cell matrix is considered as a perfect elasto-plastic material following the von Mises yield criterion.

Findings

Different morphologies for the cell imply in different yield conditions for the same load situations. The yield surfaces in correspondence to periodic boundary condition show significant differences compared to those obtained by imposing uniform strain boundary condition. The stress Lode angle has a strong influence on the geometry of the yield surfaces considering low and intermediate triaxialities.

Originality/value

The exhaustive computational study of the effects of cell morphologies and imposed boundary conditions fills a gap in the full representation of the flow surfaces. The homogenisation-based strategy allows us to further investigate the influence of the Lode angle on the yield surfaces.

Details

Engineering Computations, vol. 40 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 22 May 2023

Peter G. Kelly, Benjamin H. Gallup and Joseph D. Roy-Mayhew

Many additively manufactured parts suffer from reduced interlayer strength. This anisotropy is necessarily tied to the orientation during manufacture. When individual features on…

1119

Abstract

Purpose

Many additively manufactured parts suffer from reduced interlayer strength. This anisotropy is necessarily tied to the orientation during manufacture. When individual features on a part have conflicting optimal orientations, the part is unavoidably compromised. This paper aims to demonstrate a strategy in which conflicting features can be functionally separated into “co-parts” which are individually aligned in an optimal orientation, selectively reinforced with continuous fiber, printed simultaneously and, finally, assembled into a composite part with substantially improved performance.

Design/methodology/approach

Several candidate parts were selected for co-part decomposition. They were printed as standard fused filament fabrication plastic parts, parts reinforced with continuous fiber in one plane and co-part assemblies both with and without continuous fiber reinforcement (CFR). All parts were loaded until failure. Additionally, parts representative of common suboptimally oriented features (“unit tests”) were similarly printed and tested.

Findings

CFR delivered substantial improvement over unreinforced plastic-only parts in both standard parts and co-part assemblies, as expected. Reinforced parts held up to 2.5x the ultimate load of equivalent plastic-only parts. The co-part strategy delivered even greater improvement, particularly when also reinforced with continuous fiber. Plastic-only co-part assemblies held up to 3.2x the ultimate load of equivalent plastic only parts. Continuous fiber reinforced co-part assemblies held up to 6.4x the ultimate load of equivalent plastic-only parts. Additionally, the thought process behind general co-part design is explored and a vision of simulation-driven automated co-part implementation is discussed.

Originality/value

This technique is a novel way to overcome one of the most common challenges preventing the functional use of additively manufactured parts. It delivers compelling performance with continuous carbon fiber reinforcement in 3D printed parts. Further study could extend the technique to any anisotropic manufacturing method, additive or otherwise.

Details

Rapid Prototyping Journal, vol. 29 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 428