Search results

1 – 10 of 158
Article
Publication date: 10 September 2024

Shi Xu, Hongyu Gao, Fukang Yang, Ziyue Zhang, Shuolei Wang, Xiaojian Jiang and Yubing Dong

The purpose of this study is to improve the mechanical properties, thermal insulation properties and flame retardant properties of polyethylene terephthalate (PET), the organic…

Abstract

Purpose

The purpose of this study is to improve the mechanical properties, thermal insulation properties and flame retardant properties of polyethylene terephthalate (PET), the organic montmorillonite (OMMT)/SiO2 aerogel/PET composites and fibers were prepared, and the effects of the OMMT/SiO2 aerogel on the structure, thermal conductivity and flame retardance of the OMMT/SiO2 aerogel/PET composites and their fibers were systematically investigated.

Design/methodology/approach

The OMMT/SiO2 aerogel/PET composites and fibers were prepared by in-situ polymerization and melt spinning using SiO2 aerogel as thermal insulation filler and OMMT (DK2) as comodified filler.

Findings

The experimental results showed that OMMT improved the crystallization properties of PET. Compared with the crystallinity of SiO2 aerogel/PET composites (34.8%), SiO2 aerogel/PET composites and their fibers reached 45.1% and 49.2%, respectively. The breaking strength of the OMMT/SiO2 aerogel/PET composite fibers were gradually increased with the OMMT content. When the content of OMMT was 0.8 wt.%, the fracture strength of the composite fibers reached 4.40 cN/dtex, which was 54% higher than that of the SiO2 aerogel/PET fiber. In addition, the thermal insulation properties of the composites and their fibers were improved by addition of fillers, and at the same time reached the flame retardant level. The thermal conductivity of the 0.8 wt.% OMMT/SiO2 aerogel/PET composites was 101.78 mW/(m·K), which was 49.3% and 58.8% lower than that of the SiO2 aerogel/PET composites and the pure PET, respectively. The thermal conductivity of the fiber fabrics woven from the 0.8 wt.% OMMT/SiO2 aerogel/PET composites was 28.18 mW/(m·K), which was 29.0% and 44.6% lower than that of the SiO2 aerogel/PET composite fiber fabrics and PET fiber fabrics. The flame retardancy of the composites was improved, with an limiting oxygen index value of 29.2% for the 0.8 wt.% OMMT/SiO2 aerogel/PET composites, which was 4.1% higher compared to the SiO2 aerogel/PET composites, and achieved the flame retardant level.

Research limitations/implications

The SiO2 aerogel/PET composites and their fibers have good mechanical properties, flame retardant properties and thermal insulation properties, exhibited good potential for application in the field of thermal insulation, such as warm clothing. Nowadays, as the energy crisis is becoming more and more serious, it is very important to improve the thermal insulation properties of PET to reduce energy losses and mitigate the energy crisis.

Originality/value

In this study, PET based composites and their fibers with excellent mechanical properties, thermal insulation properties and flame retardant property were obtained by using three-dimensional network porous silica aerogel with low density and low thermal conductivity as the thermal insulation functional filler and two-dimensional layered OMMT as the synergetic modified filler.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 5 March 2024

Maria Ghannoum, Joseph Assaad, Michel Daaboul and Abdulkader El-Mir

The use of waste polyethylene terephthalate (PET) plastics derived from shredded bottles in concrete is not formalized yet, especially in reinforced members such as beams and…

Abstract

Purpose

The use of waste polyethylene terephthalate (PET) plastics derived from shredded bottles in concrete is not formalized yet, especially in reinforced members such as beams and columns. The disposal of plastic wastes in concrete is a viable alternative to manage those wastes while minimizing the environmental impacts associated to recycling, carbon dioxide emissions and energy consumption.

Design/methodology/approach

This paper evaluates the suitability of 2D deterministic and stochastic finite element (FE) modeling to predict the shear strength behavior of reinforced concrete (RC) beams without stirrups. Different concrete mixtures prepared with 1.5%–4.5% PET additions, by volume, are investigated.

Findings

Test results showed that the deterministic and stochastic FE approaches are accurate to assess the maximum load of RC beams at failure and corresponding midspan deflection. However, the crack patterns observed experimentally during the different stages of loading can only be reproduced using the stochastic FE approach. This later method accounts for the concrete heterogeneity due to PET additions, allowing a statistical simulation of the effect of mechanical properties (i.e. compressive strength, tensile strength and Young’s modulus) on the output FE parameters.

Originality/value

Data presented in this paper can be of interest to civil and structural engineers, aiming to predict the failure mechanisms of RC beams containing plastic wastes, while minimizing the experimental time and resources needed to estimate the variability effect of concrete properties on the performance of such structures.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 8 April 2024

Fukang Yang, Wenjun Wang, Yongjie Yan and YuBing Dong

Polyethylene terephthalate (PET) as a fiber molding polymer is widely used in aerospace, electrical and electronic, clothing and other fields. The purpose of this study is to…

Abstract

Purpose

Polyethylene terephthalate (PET) as a fiber molding polymer is widely used in aerospace, electrical and electronic, clothing and other fields. The purpose of this study is to improve the thermal insulation performance of polyethylene terephthalate (PET), the SiO2 aerogel/PET composites slices and fibers were prepared, and the effects of the SiO2 aerogel on the morphology, structure, crystallization property and thermal conductivity of the SiO2 aerogel/PET composites slices and their fibers were systematically investigated.

Design/methodology/approach

The mass ratio of purified terephthalic acid and ethylene glycol was selected as 1:1.5, which was premixed with Sb2O3 and the corresponding mass of SiO2 aerogel, and SiO2 aerogel/PET composites were prepared by direct esterification and in-situ polymerization. The SiO2 aerogel/PET composite fibers were prepared by melt-spinning method.

Findings

The results showed that the SiO2 aerogel was uniformly dispersed in the PET matrix. The thermal insulation coefficient of PET was significantly reduced by the addition of SiO2 aerogel, and the thermal conductivity of the 1.0 Wt.% SiO2 aerogel/PET composites was reduced by 75.74 mW/(m · K) compared to the pure PET. The thermal conductivity of the 0.8 Wt.% SiO2 aerogel/PET composite fiber was reduced by 46.06% compared to the pure PET fiber. The crystallinity and flame-retardant coefficient of the SiO2 aerogel/PET composite fibers showed an increasing trend with the addition of SiO2 aerogel.

Research limitations/implications

The SiO2 aerogel/PET composite slices and their fibers have good thermal insulation properties and exhibit good potential for application in the field of thermal insulation, such as warm clothes. In today’s society where the energy crisis is becoming increasingly serious, improving the thermal insulation performance of PET to reduce energy loss will be of great significance to alleviate the energy crisis.

Originality/value

In this study, SiO2 aerogel/PET composite slices and their fibers were prepared by an in situ polymerization process, which solved the problem of difficult dispersion of nanoparticles in the matrix and the thermal conductivity of PET significantly reduced.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 31 October 2023

Ouided Dehas, Laidi Babouri, Yasmina Biskri and Jean-Francois Bardeau

This study aims to deal with both the development and mechanical investigations of unsaturated polyester matrix (UPR) composites containing recycled polyethylene terephthalate…

Abstract

Purpose

This study aims to deal with both the development and mechanical investigations of unsaturated polyester matrix (UPR) composites containing recycled polyethylene terephthalate (PET) fibers as new fillers.

Design/methodology/approach

UPR/PET fibers composites have been developed as mats by incorporating 5, 8, 13 and 18 parts per hundred of rubber (phr) of 6-, 10- and 15-mm length PET fibers from the recycling of postconsumer bottles. The mechanical and physical properties of the composites were investigated as a function of fiber content and length. A significant increase in stress at break and in ultimate stress (sr) were observed for composites reinforced with 5 and 8 phr of 15-mm length PET fibers. The Izod impact strength of UPR/mat PET fiber composites as a function of fiber rate and length showed that the 5 and 8 phr composites for the 15-mm length PET fiber have the optimal mechanical properties 13.55 and 10.50 Kj/m2, respectively. The morphological study showed that the strong adhesion resulting from the affinity of the PET fiber for the UPR matrix. The ductile fracture of materials reinforced with 5 and 8 phr is confirmed by the fiber deformation and fracture surface roughness.

Findings

This study concluded that the PET fiber enhances the properties of composites, a good correlation was observed between the results of the mechanical tests and the structural analysis revealing that for the lower concentrations, the PET fibers are well dispersed into the resin, but entanglements are evidenced when the fiber content increases.

Originality/value

It can be shown from scanning electron microscopy micrographs that the fabrication technique produced composites with good interfacial adhesion between PET fibers and UPR matrix.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 19 January 2023

Abolfazl Zare

This paper aims to extracted sericin from the cocoons of Bombyx mori silkworms, and sericin powder was applied onto drawn textured polyethylene terephthalate (PET) yarns as a spin…

Abstract

Purpose

This paper aims to extracted sericin from the cocoons of Bombyx mori silkworms, and sericin powder was applied onto drawn textured polyethylene terephthalate (PET) yarns as a spin finish. The reactivity on the surface of PET yarns was analyzed through Fourier transform infrared spectrophotometry–attenuated total reflectance (FTIR-ATR) and dyeing with methylene blue as a reactive dye. Also, investigations were conducted on the effects of sericin, citrc acid (CA) (as a crosslinking agent), and sodium hypophosphite (as a catalyst) concentrations on some properties of false-twist textured PET yarns.

Design/methodology/approach

A false-twist texturing machine (Scragg-Shirley minibulk, England) was used with the draw ratio of 1.05, heating temperature of 120°C, texturing speed of 100 m min−1 and applied twist of 3,000 TPM. The aqueous extraction of sericin was carried out by the boiling of the raw silk in distilled water with L:R: 40:1 for 120 min. The aqueous solution was filtered with a filter paper to remove the impurities and insoluble fibroin. Finally, the sericin solution was freeze-dried to obtain the sericin powder. The sericin solution was applied on the drawn textured PET yarns using the “pad-dry-cure” method.

Findings

Sericin fixation onto the PET yarns was confirmed by FTIR-ATR. The results showed that there were no significant changes in the tensile strength, linear density, crimp contraction and crimp modulus, elongation at break and shrinkage. In contrast, a substantial increase was observed in moisture regain, vertical wicking, dye uptake and ultraviolet protection. There was also a reduction just in the electrical resistivity, in the presence of sericin.

Originality/value

Although sericin has been known to have numerous beneficial properties, its application in textile industry as a spin finish has not been reported yet.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 20 June 2024

Bikramjit Rishi, Atul Shiva and Ritika Sharma Israney

The phenomenal growth in dog ownership, dog-related products and services consumption, and the development of the pet industry emphasizes the need for a deeper understanding of…

Abstract

Purpose

The phenomenal growth in dog ownership, dog-related products and services consumption, and the development of the pet industry emphasizes the need for a deeper understanding of dog-human companionship. This study explored different dimensions of willingness to buy and pay for dog-human companionship.

Design/methodology/approach

The study was conducted among dog owners (N = 337). The data was collected from the dog owners through an adapted questionnaire. Variance-based Partial Least Square Structural Equation Modeling (PLS-SEM) was applied to understand the relationship among the variables under study.

Findings

The results of the data analysis revealed that specialty purchases and activity/youth had a significant association with willingness to pay for dog companionship. However, boundaries predict the willingness to buy products and services related to dogs. In addition, there was a significant difference between males and females regarding buying intentions, wherein females were willing to buy dog products in the Indian context.

Originality/value

This study provides significant dimensions of willingness to buy and pay for the pet industry. The results of this study can help managers draft marketing strategies to influence dog owners.

Details

Asia Pacific Journal of Marketing and Logistics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-5855

Keywords

Article
Publication date: 6 May 2024

Yue (Darcy) Lu, Yifeng Liang and Yao-Chin Wang

This study aims to conceptualize the characteristics of artificial intelligence (AI) dogs while exploring their applications in tourism and hospitality settings.

Abstract

Purpose

This study aims to conceptualize the characteristics of artificial intelligence (AI) dogs while exploring their applications in tourism and hospitality settings.

Design/methodology/approach

The total of 30 in-depth interviews were conducted, and data were analyzed through thematic analysis.

Findings

This study proposed differences between AI dogs and real dogs and human-like robots, core characteristics of AI dogs’ functions, a matrix of appearance and expectation regarding intelligence for AI dogs and human-like robots, the relationship between ethical barriers and task complexity, adoptions of AI dogs in different user segments and practical applications in hospitality and tourism settings, such as restaurants, city tour guides, extended-stay resorts and event organizations.

Research limitations/implications

This research advances the field of tourism and hospitality studies by introducing the new concept of AI dogs and their practical applications. This present study adds new insights into the opportunities and contexts of human–robot interaction in the field of tourism and hospitality.

Originality/value

To the best of the authors’ knowledge, this research is one of the first studies of AI dogs in tourism and hospitality.

Details

Journal of Hospitality and Tourism Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9880

Keywords

Article
Publication date: 1 December 2023

Wan Xu, Xinsheng Liu, Huijuan Zhang, Ting Huo, Zhenbin Chen and Yuan Sun

This study aims to prepare an imprinted composite membrane with grafted temperature-sensitive blocks for the efficient adsorption and separation of rhenium(Re) from aqueous…

Abstract

Purpose

This study aims to prepare an imprinted composite membrane with grafted temperature-sensitive blocks for the efficient adsorption and separation of rhenium(Re) from aqueous solutions.

Design/methodology/approach

PVDF resin membrane was used as the substrate, dopamine and chitosan (CS) were used to modify the membrane surface and temperature-sensitive block PDEA was grafted on the membrane surface. Then acrylic acid (AA) and N-methylol acrylamide (N-MAM) were used as the functional monomers, ethyleneglycol dimethacrylate (EGDMA) as the cross-linker and ascorbic acid-hydrogen peroxide (Vc-H2O2) as the initiator to obtain the temperature-sensitive ReO4 imprinted composite membranes.

Findings

The effect of the preparation process on the performance of CS–Re–TIICM was investigated in detail, and the optimal preparation conditions were as follows: the molar ratios of AA–NH4ReO4, N-MAM and EGDMA were 0.13, 0.60 and 1.00, respectively. The optimal temperature and time of the reaction were 40 °C and 24 h. The maximum adsorption capacity of CS–Re–TIICM prepared under optimal conditions was 0.1071 mmol/g, and the separation was 3.90 when MnO4 was used as the interfering ion. The quasi first-order kinetics model and Langmuir model were more suitable to describe the adsorption process.

Practical implications

With the increasing demand for Re, the recovery of Re from Re-containing secondary resources becomes important. This study demonstrated a new material that could be separated and recovered Re in a complex environment, which could effectively alleviate the conflict between the supply and demand of Re.

Originality/value

This contribution provided a new material for the selective separation and purification of ReO4, and the adsorption capacity and separation of CS–Re–TIICM were increased with 1.673 times and 1.219 time compared with other Re adsorbents, respectively. In addition, when it was used for the purification of NH4ReO4 crude, the purity was increased from 91.950% to 99.999%.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 27 September 2023

Yuanhao Yang, Guangyu Chen, Zhuo Luo, Liuqing Huang, Chentong Zhang, Xuetao Luo, Haixiang Luo and Weiwei Yu

The purpose of this study is to prepare thermal transfer ribbons with good alcohol resistance.

Abstract

Purpose

The purpose of this study is to prepare thermal transfer ribbons with good alcohol resistance.

Design/methodology/approach

A variety of alcohol-resistant thermal transfer inks were prepared using different polyester resins. The printing temperature, printing effect, adhesion and alcohol resistance of the inks on the label were studied to determine the feasibility of using the ink for manufacturing thermal transfer ribbons. The ink formulations were prepared by a simple and stable grinding technology, and then use mature coating technology to make the ink into a thermal transfer ribbon.

Findings

The results show that the thermal transfer ink has good scratch resistance, good alcohol resistance and low printing temperature when the three resins coexist. Notably, the performance of the ribbon produced by 500 mesh anilox roller was better than that of other meshes. Specifically, the ink on the matte silver polyethylene terephthalate (PET) label surface was wiped with a cotton cloth soaked in isopropyl alcohol under 500 g of pressure. After 50 wiping cycles, the ink remained intact.

Originality/value

The proposed method not only ensures good alcohol resistance but also has lower printing temperature and wider label applicability. Therefore, it can effectively reduce the loss of printhead and reduce production costs, because of the low printing temperature.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 13 August 2024

Sofien Benltoufa, Hind Algamdy, Adel Ghith, Faten Fayala and Lubos Hes

The paper aims to investigate the dynamic measurement of the water vapour resistance. The water vapour diffusion kinetics depends on the fibre’s material. So, water vapour…

Abstract

Purpose

The paper aims to investigate the dynamic measurement of the water vapour resistance. The water vapour diffusion kinetics depends on the fibre’s material. So, water vapour resistance measurement times till the equilibrium steady state can vary in the case of natural fibres compared to synthetic fibres. Devices for determining water vapour resistance according to the ISO 11092 standard allow static values to be measured.

Design/methodology/approach

In this study to investigate the dynamic of the water vapour resistance, a new parameter named “holding period” was introduced and defined as the time from sample placement on the measuring head until the measuring process begins. The holding period was varied as 0, 30, 60, 90, 120, 180, 240 and 300 s. Wool and cotton knitted fabrics were tested as natural fibres and compared to 100% polyester and 90% polyester/10% elastane as synthetic fibres. Measurements were conducted under both air velocities of 1 and 2 m/s. The experimental test data were statistically analysed based on ANOVA and four-in-one residual plots.

Findings

Statistical analysis of experimental tests shows that the holding period affects water vapour resistance in both air velocities of 1 and 2 m/s and on the measured values in the case of hydrophilic fibres.

Research limitations/implications

The study of the dynamic relative water vapour permeability of natural and synthetic is an important area of interest for future research.

Practical implications

It is recommended to hold the samples on the top of the head measurement before starting the test.

Originality/value

Following the ISO 11092 standard, the static values of the water vapour resistance were measured without considering the dynamic behaviour of the water vapour diffusion through the textile fabrics. This paper fulfils an experimental dynamic measurement of the water vapour resistance.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of 158