Search results

1 – 10 of 317
Article
Publication date: 2 May 2024

Gerasimos G. Rigatos

To provide high torques needed to move a robot’s links, electric actuators are followed by a transmission system with a high transmission rate. For instance, gear ratios of 100:1…

Abstract

Purpose

To provide high torques needed to move a robot’s links, electric actuators are followed by a transmission system with a high transmission rate. For instance, gear ratios of 100:1 are often used in the joints of a robotic manipulator. This results into an actuator with large mechanical impedance (also known as nonback-drivable actuator). This in turn generates high contact forces when collision of the robotic mechanism occur and can cause humans’ injury. Another disadvantage of electric actuators is that they can exhibit overheating when constant torques have to be provided. Comparing to electric actuators, pneumatic actuators have promising properties for robotic applications, due to their low weight, simple mechanical design, low cost and good power-to-weight ratio. Electropneumatically actuated robots usually have better friction properties. Moreover, because of low mechanical impedance, pneumatic robots can provide moderate interaction forces which is important for robotic surgery and rehabilitation tasks. Pneumatic actuators are also well suited for exoskeleton robots. Actuation in exoskeletons should have a fast and accurate response. While electric motors come against high mechanical impedance and the risk of causing injuries, pneumatic actuators exhibit forces and torques which stay within moderate variation ranges. Besides, unlike direct current electric motors, pneumatic actuators have an improved weight-to-power ratio and avoid overheating problems.

Design/methodology/approach

The aim of this paper is to analyze a nonlinear optimal control method for electropneumatically actuated robots. A two-link robotic exoskeleton with electropneumatic actuators is considered as a case study. The associated nonlinear and multivariable state-space model is formulated and its differential flatness properties are proven. The dynamic model of the electropneumatic robot is linearized at each sampling instance with the use of first-order Taylor series expansion and through the computation of the associated Jacobian matrices. Within each sampling period, the time-varying linearization point is defined by the present value of the robot’s state vector and by the last sampled value of the control inputs vector. An H-infinity controller is designed for the linearized model of the robot aiming at solving the related optimal control problem under model uncertainties and external perturbations. An algebraic Riccati equation is solved at each time-step of the control method to obtain the stabilizing feedback gains of the H-infinity controller. Through Lyapunov stability analysis, it is proven that the robot’s control scheme satisfies the H-infinity tracking performance conditions which indicate the robustness properties of the control method. Moreover, global asymptotic stability is proven for the control loop. The method achieves fast convergence of the robot’s state variables to the associated reference trajectories, and despite strong nonlinearities in the robot’s dynamics, it keeps moderate the variations of the control inputs.

Findings

In this paper, a novel solution has been proposed for the nonlinear optimal control problem of robotic exoskeletons with electropneumatic actuators. As a case study, the dynamic model of a two-link lower-limb robotic exoskeleton with electropneumatic actuators has been considered. The dynamic model of this robotic system undergoes first approximate linearization at each iteration of the control algorithm around a temporary operating point. Within each sampling period, this linearization point is defined by the present value of the robot’s state vector and by the last sampled value of the control inputs vector. The linearization process relies on first-order Taylor series expansion and on the computation of the associated Jacobian matrices. The modeling error which is due to the truncation of higher-order terms from the Taylor series is considered to be a perturbation which is asymptotically compensated by the robustness of the control algorithm. To stabilize the dynamics of the electropneumatically actuated robot and to achieve precise tracking of reference setpoints, an H-infinity (optimal) feedback controller is designed. Actually, the proposed H-infinity controller for the model of the two-link electropneumatically actuated exoskeleton achieves the solution of the associated optimal control problem under model uncertainty and external disturbances. This controller implements a min-max differential game taking place between: (i) the control inputs which try to minimize a cost function which comprises a quadratic term of the state vector’s tracking error and (ii) the model uncertainty and perturbation inputs which try to maximize this cost function. To select the stabilizing feedback gains of this H-infinity controller, an algebraic Riccati equation is being repetitively solved at each time-step of the control method. The global stability properties of the H-infinity control scheme are proven through Lyapunov analysis.

Research limitations/implications

Pneumatic actuators are characterized by high nonlinearities which are due to air compressibility, thermodynamics and valves behavior and thus pneumatic robots require elaborated nonlinear control schemes to ensure their fast and precise positioning. Among the control methods which have been applied to pneumatic robots, one can distinguish differential geometric approaches (Lie algebra-based control, differential flatness theory-based control, nonlinear model predictive control [NMPC], sliding-mode control, backstepping control and multiple models-based fuzzy control). Treating nonlinearities and fault tolerance issues in the control problem of robotic manipulators with electropneumatic actuators has been a nontrivial task.

Practical implications

The novelty of the proposed control method is outlined as follows: preceding results on the use of H-infinity control to nonlinear dynamical systems were limited to the case of affine-in-the-input systems with drift-only dynamics. These results considered that the control inputs gain matrix is not dependent on the values of the system’s state vector. Moreover, in these approaches the linearization was performed around points of the desirable trajectory, whereas in the present paper’s control method the linearization points are related with the value of the state vector at each sampling instance as well as with the last sampled value of the control inputs vector. The Riccati equation which has been proposed for computing the feedback gains of the controller is novel, so is the presented global stability proof through Lyapunov analysis. This paper’s scientific contribution is summarized as follows: (i) the presented nonlinear optimal control method has improved or equally satisfactory performance when compared against other nonlinear control schemes that one can consider for the dynamic model of robots with electropneumatic actuators (such as Lie algebra-based control, differential flatness theory-based control, nonlinear model-based predictive control, sliding-mode control and backstepping control), (ii) it achieves fast and accurate tracking of all reference setpoints, (iii) despite strong nonlinearities in the dynamic model of the robot, it keeps moderate the variations of the control inputs and (iv) unlike the aforementioned alternative control approaches, this paper’s method is the only one that achieves solution of the optimal control problem for electropneumatic robots.

Social implications

The use of electropneumatic actuation in robots exhibits certain advantages. These can be the improved weight-to-power ratio, the lower mechanical impedance and the avoidance of overheating. At the same time, precise positioning and accurate execution of tasks by electropneumatic robots requires the application of elaborated nonlinear control methods. In this paper, a new nonlinear optimal control method has been developed for electropneumatically actuated robots and has been specifically applied to the dynamic model of a two-link robotic exoskeleton. The benefit from using this paper’s results in industrial and biomedical applications is apparent.

Originality/value

A comparison of the proposed nonlinear optimal (H-infinity) control method against other linear and nonlinear control schemes for electropneumatically actuated robots shows the following: (1) Unlike global linearization-based control approaches, such as Lie algebra-based control and differential flatness theory-based control, the optimal control approach does not rely on complicated transformations (diffeomorphisms) of the system’s state variables. Besides, the computed control inputs are applied directly on the initial nonlinear model of the electropneumatic robot and not on its linearized equivalent. The inverse transformations which are met in global linearization-based control are avoided and consequently one does not come against the related singularity problems. (2) Unlike model predictive control (MPC) and NMPC, the proposed control method is of proven global stability. It is known that MPC is a linear control approach that if applied to the nonlinear dynamics of the electropneumatic robot, the stability of the control loop will be lost. Besides, in NMPC the convergence of its iterative search for an optimum depends on initialization and parameter values selection and consequently the global stability of this control method cannot be always assured. (3) Unlike sliding-mode control and backstepping control, the proposed optimal control method does not require the state-space description of the system to be found in a specific form. About sliding-mode control, it is known that when the controlled system is not found in the input-output linearized form the definition of the sliding surface can be an intuitive procedure. About backstepping control, it is known that it cannot be directly applied to a dynamical system if the related state-space model is not found in the triangular (backstepping integral) form. (4) Unlike PID control, the proposed nonlinear optimal control method is of proven global stability, the selection of the controller’s parameters does not rely on a heuristic tuning procedure, and the stability of the control loop is assured in the case of changes of operating points. (5) Unlike multiple local models-based control, the nonlinear optimal control method uses only one linearization point and needs the solution of only one Riccati equation so as to compute the stabilizing feedback gains of the controller. Consequently, in terms of computation load the proposed control method for the electropneumatic actuator’s dynamics is much more efficient.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 22 April 2024

Ghada Karaki, Rami A. Hawileh and M.Z. Naser

This study examines the effect of temperature-dependent material models for normal-strength (NSC) and high-strength concrete (HSC) on the thermal analysis of reinforced concrete…

Abstract

Purpose

This study examines the effect of temperature-dependent material models for normal-strength (NSC) and high-strength concrete (HSC) on the thermal analysis of reinforced concrete (RC) walls.

Design/methodology/approach

The study performs an one-at-a-time (OAT) sensitivity analysis to assess the impact of variables defining the constitutive and parametric fire models on the wall's thermal response. Moreover, it extends the sensitivity analysis to a variance-based analysis to assess the effect of constitutive model type, fire model type and constitutive model uncertainty on the RC wall's thermal response variance. The study determines the wall’s thermal behaviour reliability considering the different constitutive models and their uncertainty.

Findings

It is found that the impact of the variability in concrete’s conductivity is determined by its temperature-dependent model, which differs for NSC and HSC. Therefore, more testing and improving material modelling are needed. Furthermore, the heating rate of the fire scenario is the dominant factor in deciding fire-resistance performance because it is a causal factor for spalling in HSC walls. And finally the reliability of wall's performance decreased sharply for HSC walls due to the expected spalling of the concrete and loss of cross-section integrity.

Originality/value

Limited studies in the current open literature quantified the impact of constitutive models on the behaviour of RC walls. No studies have examined the effect of material models' uncertainty on wall’s response reliability under fire. Furthermore, the study's results contribute to the ongoing attempts to shape performance-based structural fire engineering.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 12 December 2023

T.M. Jeyashree and P.R. Kannan Rajkumar

This study focused on identifying critical factors governing the fire response of prestressed hollow-core slabs. The hollow-core slabs used as flooring units can be subjected to…

Abstract

Purpose

This study focused on identifying critical factors governing the fire response of prestressed hollow-core slabs. The hollow-core slabs used as flooring units can be subjected to elevated temperatures during a fire. The fire response of prestressed hollow-core slabs is required to develop slabs with greater fire endurance. The present study aims to determine the extent to which the hollow-core slab can sustain load during a fire without undergoing progressive collapse under extreme fire and heating scenarios.

Design/methodology/approach

A finite element model was generated to predict the fire response of prestressed hollow core slabs under elevated temperatures. The accuracy of the model was predicted by examining thermal and structural responses through coupled temperature displacement analysis. A sensitivity analysis was performed to study the effects of concrete properties on prediction of system response. A parametric study was conducted by varying the thickness of the slab, fire and heating scenarios.

Findings

Thermal conductivity and specific heat of concrete were determined as sensitive parameters. The thickness of the slab was identified as a critical factor at a higher load level. Asymmetric heating of the slab resulted in higher fire resistance compared with symmetric heating.

Originality/value

This is the first study focused on studying the effect of modeling uncertainties on the system response by sensitivity analysis under elevated temperatures. The developed model with a parametric study helps in identifying critical factors for design purposes.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 22 November 2022

Juan Gabriel Brida, Bibiana Lanzilotta and Lucia Rosich

From these data, the authors construct an uncertainty index through the use of a vector autoregressive (VAR) model to measure the impact of uncertainty on GDP, controlling for…

Abstract

Purpose

From these data, the authors construct an uncertainty index through the use of a vector autoregressive (VAR) model to measure the impact of uncertainty on GDP, controlling for inflation, which may affect macroeconomic performance. Results indicate that uncertainty is negatively correlated with the economic cycle and the inter-annual variation of the biannual average product.

Design/methodology/approach

This study empirically explores the dynamics of expectations of the Uruguayan manufacturing firms about industrial economic growth. This study explores the dynamics of the industrial economic growth expectations of Uruguayan manufacturing firms. The empirical research is based on firms' expectations data collected through a monthly survey carried out by the Chamber of Industries of Uruguay (CIU) in 2003–2018.

Findings

Granger causality tests show that uncertainty Granger-causes industrial production growth and a one standard deviation shock on uncertainty generates a contraction in the industrial production growth rate. Finally, the authors use statistical and network tools to identify groups of firms with similar performance on expectations. Results show that higher uncertainty is associated with smaller, more interconnected groups of firms, and that the number of homogeneous groups and the distance between groups increases with uncertainty. These findings suggest that policies focused on the coordination of expectations can lead to the development of stable opinion groups.

Originality/value

The paper introduces new data and new methodologies to analyze the dynamics of expectations of manufacturing firms about industrial economic growth.

Highlights

  1. An empirical approach to compare expectations of firms is introduced.

  2. The occurrence of groups of opinion is tested.

  3. Central companies in the network of expectations are detected.

  4. More uncertainty implies a higher degree of discrepancy between the overall firm’s opinions and more compact opinion groups.

An empirical approach to compare expectations of firms is introduced.

The occurrence of groups of opinion is tested.

Central companies in the network of expectations are detected.

More uncertainty implies a higher degree of discrepancy between the overall firm’s opinions and more compact opinion groups.

Details

International Journal of Emerging Markets, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-8809

Keywords

Open Access
Article
Publication date: 8 November 2023

Vladik Kreinovich

When the probability of each model is known, a natural idea is to select the most probable model. However, in many practical situations, the exact values of these probabilities…

Abstract

Purpose

When the probability of each model is known, a natural idea is to select the most probable model. However, in many practical situations, the exact values of these probabilities are not known; only the intervals that contain these values are known. In such situations, a natural idea is to select some probabilities from these intervals and to select a model with the largest selected probabilities. The purpose of this study is to decide how to most adequately select these probabilities.

Design/methodology/approach

It is desirable to have a probability-selection method that preserves independence. If, according to the probability intervals, the two events were independent, then the selection of probabilities within the intervals should preserve this independence.

Findings

The paper describes all techniques for decision making under interval uncertainty about probabilities that are consistent with independence. It is proved that these techniques form a 1-parametric family, a family that has already been successfully used in such decision problems.

Originality/value

This study provides a theoretical explanation of an empirically successful technique for decision-making under interval uncertainty about probabilities. This explanation is based on the natural idea that the method for selecting probabilities from the corresponding intervals should preserve independence.

Details

Asian Journal of Economics and Banking, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2615-9821

Keywords

Article
Publication date: 18 March 2024

Prosun Mandal, Srinjoy Chatterjee and Shankar Chakraborty

In many of today’s manufacturing industries, such as automobile, aerospace, defence, die and mould making, medical and electrical discharge machining (EDM) has emerged as an…

Abstract

Purpose

In many of today’s manufacturing industries, such as automobile, aerospace, defence, die and mould making, medical and electrical discharge machining (EDM) has emerged as an effective material removal process. In this process, a series of discontinuous electric discharges is used for removing material from the workpiece in the form of craters generating a replica of the tool into the workpiece in a dielectric environment. Appropriate selection of the tool electrode material and combination of input parameters is an important requirement for performance enhancement of an EDM process. This paper aims to optimize an EDM process using single-valued neutrosophic grey relational analysis using Cu-multi-walled carbon nanotube (Cu-MWCNT) composite tool electrode.

Design/methodology/approach

This paper proposes the application of grey relational analysis (GRA) in a single-valued neutrosophic fuzzy environment to identify the optimal parametric intermix of an EDM process while considering Cu-MWCNT composite as the tool electrode material. Based on Taguchi’s L9 orthogonal array, nine experiments are conducted at varying combinations of four EDM parameters, i.e. pulse-on time, duty factor, discharge current and gap voltage, with subsequent measurement of two responses, i.e. material removal rate (MRR) and tool wear rate (TWR). The electrodeposition process is used to fabricate the Cu-MWCNT composite tool.

Findings

It is noticed that both the responses would be simultaneously optimized at higher levels of pulse-on time (38 µs) and duty factor (8), moderate level of discharge current (5 A) and lower level of gap voltage (30 V). During bi-objective optimization (maximization of MRR and minimization of TWR) of the said EDM process, the achieved values of MRR and TWR are 243.74 mm3/min and 0.001034 g/min, respectively.

Originality/value

Keeping in mind the type of response under consideration, their measured values for each of the EDM experiments are expressed in terms of linguistic variables which are subsequently converted into single-valued neutrosophic numbers. Integration of GRA with single-valued neutrosophic sets would help in optimizing the said EDM process with the Cu-MWCNT composite tool while simultaneously considering truth-membership, indeterminacy membership and falsity-membership degrees in a human-centric uncertain decision-making environment.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 21 March 2024

Warisa Thangjai and Sa-Aat Niwitpong

Confidence intervals play a crucial role in economics and finance, providing a credible range of values for an unknown parameter along with a corresponding level of certainty…

Abstract

Purpose

Confidence intervals play a crucial role in economics and finance, providing a credible range of values for an unknown parameter along with a corresponding level of certainty. Their applications encompass economic forecasting, market research, financial forecasting, econometric analysis, policy analysis, financial reporting, investment decision-making, credit risk assessment and consumer confidence surveys. Signal-to-noise ratio (SNR) finds applications in economics and finance across various domains such as economic forecasting, financial modeling, market analysis and risk assessment. A high SNR indicates a robust and dependable signal, simplifying the process of making well-informed decisions. On the other hand, a low SNR indicates a weak signal that could be obscured by noise, so decision-making procedures need to take this into serious consideration. This research focuses on the development of confidence intervals for functions derived from the SNR and explores their application in the fields of economics and finance.

Design/methodology/approach

The construction of the confidence intervals involved the application of various methodologies. For the SNR, confidence intervals were formed using the generalized confidence interval (GCI), large sample and Bayesian approaches. The difference between SNRs was estimated through the GCI, large sample, method of variance estimates recovery (MOVER), parametric bootstrap and Bayesian approaches. Additionally, confidence intervals for the common SNR were constructed using the GCI, adjusted MOVER, computational and Bayesian approaches. The performance of these confidence intervals was assessed using coverage probability and average length, evaluated through Monte Carlo simulation.

Findings

The GCI approach demonstrated superior performance over other approaches in terms of both coverage probability and average length for the SNR and the difference between SNRs. Hence, employing the GCI approach is advised for constructing confidence intervals for these parameters. As for the common SNR, the Bayesian approach exhibited the shortest average length. Consequently, the Bayesian approach is recommended for constructing confidence intervals for the common SNR.

Originality/value

This research presents confidence intervals for functions of the SNR to assess SNR estimation in the fields of economics and finance.

Details

Asian Journal of Economics and Banking, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2615-9821

Keywords

Article
Publication date: 23 May 2023

Taraprasad Mohapatra and Sudhansu Sekhar Mishra

The study aims to verify and establish the result of the most suitable optimization approach for higher performance and lower emission of a variable compression ratio (VCR) diesel…

Abstract

Purpose

The study aims to verify and establish the result of the most suitable optimization approach for higher performance and lower emission of a variable compression ratio (VCR) diesel engine. In this study, three types of test fuels are taken and tested in a variable compression ratio diesel engine (compression ignition). The fuels used are conventional diesel fuel, e-diesel (85% diesel-15% bioethanol) and nano-fuel (85% diesel-15% bioethanol-25 ppm Al2O3). The effect of bioethanol and nano-particles on performance, emission and cost-effectiveness is investigated at different load and compression ratios (CRs). The optimum performance and lower emission of the engine are evaluated and compared with other optimization methods.

Design/methodology/approach

The test engine is run by diesel, e-diesel (85% diesel-15% bioethanol) and nano-fuel (85% diesel-15% bioethanol-25 ppm Al2O3) in three different loadings (4 kg, 8 kg and 12 kg) and CR of 14, 16 and 18, respectively. The optimum value of energy efficiency, exergy efficiency, NOX emission and relative cost variation are determined against the input parameters using Taguchi-Grey method and confirmed by response surface methodology (RSM) technique.

Findings

Using Taguchi-Grey method, the maximum energy and exergy efficiency, minimum % relative cost variation and NOX emission are 24.64%, 59.52%, 0 and 184 ppm, respectively, at 4 kg load, 18 CR and fuel type of nano-fuel. Using RSM technique, maximum energy and exergy efficiency are 24.8% and 62.9%, and minimum NOX emission and % cost variation are 208.4 ppm and –6.5, respectively, at 5.2 kg load, 18 CR and nano-fuel. The RSM is suggested as the most appropriate technique for obtaining maximum energy and exergy efficiency, and minimum % relative cost; however, for lowest possible NOX emission, the Taguchi-Grey method is the most appropriate.

Originality/value

Waste rice straw is used to produce bioethanol. 4-E analysis, i.e. energy, exergy, emission and economic analysis, has been carried out, optimized and compared.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 25 September 2023

Wassim Ben Ayed and Rim Ben Hassen

This research aims to evaluate the accuracy of several Value-at-Risk (VaR) approaches for determining the Minimum Capital Requirement (MCR) for Islamic stock markets during the…

Abstract

Purpose

This research aims to evaluate the accuracy of several Value-at-Risk (VaR) approaches for determining the Minimum Capital Requirement (MCR) for Islamic stock markets during the pandemic health crisis.

Design/methodology/approach

This research evaluates the performance of numerous VaR models for computing the MCR for market risk in compliance with the Basel II and Basel II.5 guidelines for ten Islamic indices. Five models were applied—namely the RiskMetrics, Generalized Autoregressive Conditional Heteroskedasticity, denoted (GARCH), fractional integrated GARCH, denoted (FIGARCH), and SPLINE-GARCH approaches—under three innovations (normal (N), Student (St) and skewed-Student (Sk-t) and the extreme value theory (EVT).

Findings

The main findings of this empirical study reveal that (1) extreme value theory performs better for most indices during the market crisis and (2) VaR models under a normal distribution provide quite poor performance than models with fat-tailed innovations in terms of risk estimation.

Research limitations/implications

Since the world is now undergoing the third wave of the COVID-19 pandemic, this study will not be able to assess performance of VaR models during the fourth wave of COVID-19.

Practical implications

The results suggest that the Islamic Financial Services Board (IFSB) should enhance market discipline mechanisms, while central banks and national authorities should harmonize their regulatory frameworks in line with Basel/IFSB reform agenda.

Originality/value

Previous studies focused on evaluating market risk models using non-Islamic indexes. However, this research uses the Islamic indexes to analyze the VaR forecasting models. Besides, they tested the accuracy of VaR models based on traditional GARCH models, whereas the authors introduce the Spline GARCH developed by Engle and Rangel (2008). Finally, most studies have focus on the period of 2007–2008 financial crisis, while the authors investigate the issue of market risk quantification for several Islamic market equity during the sanitary crisis of COVID-19.

Details

PSU Research Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2399-1747

Keywords

Article
Publication date: 11 December 2023

Mohammad Hosein Madihi, Ali Akbar Shirzadi Javid and Farnad Nasirzadeh

In traditional Bayesian belief networks (BBNs), a large amount of data are required to complete network parameters, which makes it impractical. In addition, no systematic method…

Abstract

Purpose

In traditional Bayesian belief networks (BBNs), a large amount of data are required to complete network parameters, which makes it impractical. In addition, no systematic method has been used to create the structure of the BBN. The aims of this study are to: (1) decrease the number of questions and time and effort required for completing the parameters of the BBN and (2) present a simple and apprehensible method for creating the BBN structure based on the expert knowledge.

Design/methodology/approach

In this study, by combining the decision-making trial and evaluation laboratory (DEMATEL), interpretive structural modeling (ISM) and BBN, a model is introduced that can form the project risk network and analyze the impact of risk factors on project cost quantitatively based on the expert knowledge. The ranked node method (RNM) is then used to complete the parametric part of the BBN using the same data obtained from the experts to analyze DEMATEL.

Findings

Compared to the traditional BBN, the proposed method will significantly reduce the time and effort required to elicit network parameters and makes it easy to create a BBN structure. The results obtained from the implementation of the model on a mass housing project showed that considering the identified risk factors, the cost overruns relating to material, equipment, workforce and overhead cost were 37.6, 39.5, 42 and 40.1%, respectively.

Research limitations/implications

Compared to the traditional BBN, the proposed method will significantly reduce the time and effort required to elicit network parameters and makes it easy to create a BBN structure. The results obtained from the implementation of the model on a mass housing project showed that considering the identified risk factors, the cost overruns relating to material, equipment, workforce and overhead cost were 37.6, 39.5, 42 and 40.1%, respectively. The obtained results are based on a single case study project and may not be readily generalizable.

Originality/value

The presented framework makes the BBN more practical for quantitatively assessing the impact of risk on project costs. This helps to manage financial issues, which is one of the main reasons for project bankruptcy.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 10 of 317