Search results

1 – 10 of 341
Article
Publication date: 9 January 2024

Juelin Leng, Quan Xu, Tiantian Liu, Yang Yang and Peng Zheng

The purpose of this paper is to present an automatic approach for mesh sizing field generation of complicated  computer-aided design (CAD) models.

Abstract

Purpose

The purpose of this paper is to present an automatic approach for mesh sizing field generation of complicated  computer-aided design (CAD) models.

Design/methodology/approach

In this paper, the authors present an automatic approach for mesh sizing field generation. First, a source point extraction algorithm is applied to capture curvature and proximity features of CAD models. Second, according to the distribution of feature source points, an octree background mesh is constructed for storing element size value. Third, mesh size value on each node of background mesh is calculated by interpolating the local feature size of the nearby source points, and then, an initial mesh sizing field is obtained. Finally, a theoretically guaranteed smoothing algorithm is developed to restrict the gradient of the mesh sizing field.

Findings

To achieve high performance, the proposed approach has been implemented in multithreaded parallel using OpenMP. Numerical results demonstrate that the proposed approach is remarkably efficient to construct reasonable mesh sizing field for complicated CAD models and applicable for generating geometrically adaptive triangle/tetrahedral meshes. Moreover, since the mesh sizing field is defined on an octree background mesh, high-efficiency query of local size value could be achieved in the following mesh generation procedure.

Originality/value

How to determine a reasonable mesh size for complicated CAD models is often a bottleneck of mesh generation. For the complicated models with thousands or even ten thousands of geometric entities, it is time-consuming to construct an appropriate mesh sizing field for generating high-quality mesh. A parallel algorithm of mesh sizing field generation with low computational complexity is presented in this paper, and its usability and efficiency have been verified.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 20 March 2024

Ziming Zhou, Fengnian Zhao and David Hung

Higher energy conversion efficiency of internal combustion engine can be achieved with optimal control of unsteady in-cylinder flow fields inside a direct-injection (DI) engine…

Abstract

Purpose

Higher energy conversion efficiency of internal combustion engine can be achieved with optimal control of unsteady in-cylinder flow fields inside a direct-injection (DI) engine. However, it remains a daunting task to predict the nonlinear and transient in-cylinder flow motion because they are highly complex which change both in space and time. Recently, machine learning methods have demonstrated great promises to infer relatively simple temporal flow field development. This paper aims to feature a physics-guided machine learning approach to realize high accuracy and generalization prediction for complex swirl-induced flow field motions.

Design/methodology/approach

To achieve high-fidelity time-series prediction of unsteady engine flow fields, this work features an automated machine learning framework with the following objectives: (1) The spatiotemporal physical constraint of the flow field structure is transferred to machine learning structure. (2) The ML inputs and targets are efficiently designed that ensure high model convergence with limited sets of experiments. (3) The prediction results are optimized by ensemble learning mechanism within the automated machine learning framework.

Findings

The proposed data-driven framework is proven effective in different time periods and different extent of unsteadiness of the flow dynamics, and the predicted flow fields are highly similar to the target field under various complex flow patterns. Among the described framework designs, the utilization of spatial flow field structure is the featured improvement to the time-series flow field prediction process.

Originality/value

The proposed flow field prediction framework could be generalized to different crank angle periods, cycles and swirl ratio conditions, which could greatly promote real-time flow control and reduce experiments on in-cylinder flow field measurement and diagnostics.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 18 April 2024

Vaishali Rajput, Preeti Mulay and Chandrashekhar Madhavrao Mahajan

Nature’s evolution has shaped intelligent behaviors in creatures like insects and birds, inspiring the field of Swarm Intelligence. Researchers have developed bio-inspired…

Abstract

Purpose

Nature’s evolution has shaped intelligent behaviors in creatures like insects and birds, inspiring the field of Swarm Intelligence. Researchers have developed bio-inspired algorithms to address complex optimization problems efficiently. These algorithms strike a balance between computational efficiency and solution optimality, attracting significant attention across domains.

Design/methodology/approach

Bio-inspired optimization techniques for feature engineering and its applications are systematically reviewed with chief objective of assessing statistical influence and significance of “Bio-inspired optimization”-based computational models by referring to vast research literature published between year 2015 and 2022.

Findings

The Scopus and Web of Science databases were explored for review with focus on parameters such as country-wise publications, keyword occurrences and citations per year. Springer and IEEE emerge as the most creative publishers, with indicative prominent and superior journals, namely, PLoS ONE, Neural Computing and Applications, Lecture Notes in Computer Science and IEEE Transactions. The “National Natural Science Foundation” of China and the “Ministry of Electronics and Information Technology” of India lead in funding projects in this area. China, India and Germany stand out as leaders in publications related to bio-inspired algorithms for feature engineering research.

Originality/value

The review findings integrate various bio-inspired algorithm selection techniques over a diverse spectrum of optimization techniques. Anti colony optimization contributes to decentralized and cooperative search strategies, bee colony optimization (BCO) improves collaborative decision-making, particle swarm optimization leads to exploration-exploitation balance and bio-inspired algorithms offer a range of nature-inspired heuristics.

Article
Publication date: 10 November 2023

Yong Gui and Lanxin Zhang

Influenced by the constantly changing manufacturing environment, no single dispatching rule (SDR) can consistently obtain better scheduling results than other rules for the…

Abstract

Purpose

Influenced by the constantly changing manufacturing environment, no single dispatching rule (SDR) can consistently obtain better scheduling results than other rules for the dynamic job-shop scheduling problem (DJSP). Although the dynamic SDR selection classifier (DSSC) mined by traditional data-mining-based scheduling method has shown some improvement in comparison to an SDR, the enhancement is not significant since the rule selected by DSSC is still an SDR.

Design/methodology/approach

This paper presents a novel data-mining-based scheduling method for the DJSP with machine failure aiming at minimizing the makespan. Firstly, a scheduling priority relation model (SPRM) is constructed to determine the appropriate priority relation between two operations based on the production system state and the difference between their priority values calculated using multiple SDRs. Subsequently, a training sample acquisition mechanism based on the optimal scheduling schemes is proposed to acquire training samples for the SPRM. Furthermore, feature selection and machine learning are conducted using the genetic algorithm and extreme learning machine to mine the SPRM.

Findings

Results from numerical experiments demonstrate that the SPRM, mined by the proposed method, not only achieves better scheduling results in most manufacturing environments but also maintains a higher level of stability in diverse manufacturing environments than an SDR and the DSSC.

Originality/value

This paper constructs a SPRM and mines it based on data mining technologies to obtain better results than an SDR and the DSSC in various manufacturing environments.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 27 February 2024

Jacques Abou Khalil, César Jiménez Navarro, Rami El Jeaid, Abderahmane Marouf, Rajaa El Akoury, Yannick Hoarau, Jean-François Rouchon and Marianna Braza

This study aims to investigate the morphing concepts able to manipulate the dynamics of the downstream unsteadiness in the separated shear layers and, in the wake, be able to…

Abstract

Purpose

This study aims to investigate the morphing concepts able to manipulate the dynamics of the downstream unsteadiness in the separated shear layers and, in the wake, be able to modify the upstream shock–boundary layer interaction (SBLI) around an A320 morphing prototype to control these instabilities, with emphasis to the attenuation or even suppression of the transonic buffet. The modification of the aerodynamic performances according to a large parametric study carried out at Reynolds number of 4.5 × 106, Mach number of 0.78 and various angles of attack in the range of (0, 2.4)° according to two morphing concepts (travelling waves and trailing edge vibration) are discussed, and the final benefits in aerodynamic performance increase are evaluated.

Design/methodology/approach

This article examines through high fidelity (Hi-Fi) numerical simulation the effects of the trailing edge (TE) actuation and of travelling waves along a specific area of the suction side starting from practically the most downstream position of the shock wave motion according to the buffet and extending up to nearly the TE. The present paper studies through spectral analysis the coherent structures development in the near wake and the comparison of the aerodynamic forces to the non-actuated case. Thus, the physical mechanisms of the morphing leading to the increase of the lift-to-drag ratio and the drag and noise sources reduction are identified.

Findings

This study investigates the influence of shear-layer and near-wake vortices on the SBLI around an A320 aerofoil and attenuation of the related instabilities thanks to novel morphing: travelling waves generated along the suction side and trailing-edge vibration. A drag reduction of 14% and a lift-to-drag increase in the order of 8% are obtained. The morphing has shown a lift increase in the range of (1.8, 2.5)% for angle of attack of 1.8° and 2.4°, where a significant lift increase of 7.7% is obtained for the angle of incidence of 0° with a drag reduction of 3.66% yielding an aerodynamic efficiency of 11.8%.

Originality/value

This paper presents results of morphing A320 aerofoil, with a chord of 70cm and subjected to two actuation kinds, original in the state of the art at M = 0.78 and Re = 4.5 million. These Hi-Fi simulations are rather rare; a majority of existing ones concern smaller dimensions. This study showed for the first time a modified buffet mode, displaying periodic high-lift “plateaus” interspersed by shorter lift-decrease intervals. Through trailing-edge vibration, this pattern is modified towards a sinusoidal-like buffet, with a considerable amplitude decrease. Lock-in of buffet frequency to the actuation is obtained, leading to this amplitude reduction and a drastic aerodynamic performance increase.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 December 2023

Chu-Le Chong, Siti Zaleha Abdul Rasid, Haliyana Khalid and T. Ramayah

This study investigated the relationships among big data analytics capability (BDAC), low-cost advantage, differentiation advantage, market and operational performance…

Abstract

Purpose

This study investigated the relationships among big data analytics capability (BDAC), low-cost advantage, differentiation advantage, market and operational performance underpinning the resource-based view (RBV) and the entanglement view of sociomaterialism (EVS) theories.

Design/methodology/approach

A total of 191 responses from members of the Federation of Malaysian Manufacturers were analysed using a structural equation modelling approach.

Findings

This study has conclusively demonstrated that BDAC is indeed a resource bundle comprising human skills, tangible and intangible resources. This study found that BDAC positively influences competitive advantage and firm performance. The differentiation advantage was found to be a key factor in explaining market performance. Theoretically, both RBV and EVS could be used to link BDAC, differentiation advantage and market performance to explain superior firm performance.

Research limitations/implications

First, the sample is restricted to the manufacturers in Malaysia. Second, a single independent variable, BDAC, is used as a higher-order capability to influence competitive advantage, and thus, superior firm performance. Third, this study uses a self-reported survey, which means that only one respondent from each firm answered the questions. Fourth, this study excludes the focused strategy as it aims to investigate the competitive strategy used in the broader industry environment, rather than in a specific segment pursuing a focused strategy.

Practical implications

First, BDAC is a valuable, rare, inimitable and non-substitutable tool for manufacturers to enhance their firm performance. Second, BDAC is crucial for manufacturing firms to reduce costs and differentiate themselves. Third, a low-cost advantage may not help manufacturers achieve greater market and operational performance.

Originality/value

The relationship among BDAC, low-cost advantage, differentiation advantage, market and operational performance within manufacturing industry is empirically tested.

Details

International Journal of Productivity and Performance Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1741-0401

Keywords

Article
Publication date: 17 April 2024

Zul-Atfi Ismail

This paper aims to identify the different system approach using Building Information Modelling (BIM) technology that is equipped with decision making processes. Maintenance…

Abstract

Purpose

This paper aims to identify the different system approach using Building Information Modelling (BIM) technology that is equipped with decision making processes. Maintenance planning and management are integral components of the construction sector, serving the broader purpose of post-construction activities and processes. However, as Precast Concrete (PC) construction projects increase in scale and complexity, the interconnections among these activities and processes become apparent, leading to planning and performance management challenges. These challenges specifically affect the monitoring of façade components for corrective and preventive maintenance actions.

Design/methodology/approach

The concept of maintenance planning for façades, along with the main features of information and communication technology tools and techniques using building information modeling technology, is grounded in the analysis of numerous literature reviews in PC building scenarios.

Findings

This research focuses on an integrated system designed to analyze information and support decision-making in maintenance planning for PC buildings. It is based on robust data collection regarding concrete façades' failures and causes. The system aims to provide appropriate planning decisions and minimize the risk of façade failures throughout the building's lifetime.

Originality/value

The study concludes that implementing a research framework to develop such a system can significantly enhance the effectiveness of maintenance planning for façade design, construction and maintenance operations.

Details

Facilities , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0263-2772

Keywords

Article
Publication date: 31 January 2024

Shan Wang, Ji-Ye Mao and Fang Wang

Digital innovation requires organizations to reconfigure their information technology infrastructure (ITI) to cultivate creativity and implement fast experimentation. This…

Abstract

Purpose

Digital innovation requires organizations to reconfigure their information technology infrastructure (ITI) to cultivate creativity and implement fast experimentation. This research inquiries into ITI generativity, an emerging concept demoting a critical ITI capability for organizational digital innovation. More specifically, it conceptualizes ITI generativity across two dimensions—namely, systems and applications infrastructure (SAI) generativity and data analytics infrastructure (DAI) generativity—and examines their respective social and technical antecedents and their impact on digital innovation.

Design/methodology/approach

This research formulates a theoretical model to investigate the social and technical antecedents along with innovation outcomes of ITI generativity. To test this model and its associated hypotheses, a survey was administered to IT professionals possessing knowledge of their organization's IT architecture and digital innovation performance. The dataset, comprising responses from 140 organizations, was analyzed using the partial least squares technique.

Findings

Results reveal that both dimensions of ITI generativity contribute to digital innovation performance, with the effect of DAI generativity being more pronounced. In addition, SAI and DAI generativities are driven by social and technical factors within an organization. More specifically, SAI generativity is positively associated with the usage of a digital application services platform and IT human resources, whereas DAI generativity is positively linked to the usage of a data analytics services platform, data analytics services usability and data analytics human resources.

Originality/value

This research contributes to the literature on digital innovation by introducing ITI generativity as a crucial ITI capability and deciphering its role in digital innovation. It also offers useful insights and guidance for practitioners on how to build ITIs to achieve better digital innovation performance.

Article
Publication date: 27 February 2024

Shefali Arora, Ruchi Mittal, Avinash K. Shrivastava and Shivani Bali

Deep learning (DL) is on the rise because it can make predictions and judgments based on data that is unseen. Blockchain technologies are being combined with DL frameworks in…

Abstract

Purpose

Deep learning (DL) is on the rise because it can make predictions and judgments based on data that is unseen. Blockchain technologies are being combined with DL frameworks in various industries to provide a safe and effective infrastructure. The review comprises literature that lists the most recent techniques used in the aforementioned application sectors. We examine the current research trends across several fields and evaluate the literature in terms of its advantages and disadvantages.

Design/methodology/approach

The integration of blockchain and DL has been explored in several application domains for the past five years (2018–2023). Our research is guided by five research questions, and based on these questions, we concentrate on key application domains such as the usage of Internet of Things (IoT) in several applications, healthcare and cryptocurrency price prediction. We have analyzed the main challenges and possibilities concerning blockchain technologies. We have discussed the methodologies used in the pertinent publications in these areas and contrasted the research trends during the previous five years. Additionally, we provide a comparison of the widely used blockchain frameworks that are used to create blockchain-based DL frameworks.

Findings

By responding to five research objectives, the study highlights and assesses the effectiveness of already published works using blockchain and DL. Our findings indicate that IoT applications, such as their use in smart cities and cars, healthcare and cryptocurrency, are the key areas of research. The primary focus of current research is the enhancement of existing systems, with data analysis, storage and sharing via decentralized systems being the main motivation for this integration. Amongst the various frameworks employed, Ethereum and Hyperledger are popular among researchers in the domain of IoT and healthcare, whereas Bitcoin is popular for research on cryptocurrency.

Originality/value

There is a lack of literature that summarizes the state-of-the-art methods incorporating blockchain and DL in popular domains such as healthcare, IoT and cryptocurrency price prediction. We analyze the existing research done in the past five years (2018–2023) to review the issues and emerging trends.

Details

International Journal of Quality & Reliability Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 9 February 2024

Heetae Yang, Yeram Cho and Sang-Yeal Han

This study develops a comprehensive research model and investigates the significant factors affecting positive marketing outcomes in the Metaverse through perceived social…

Abstract

Purpose

This study develops a comprehensive research model and investigates the significant factors affecting positive marketing outcomes in the Metaverse through perceived social benefits and trust.

Design/methodology/approach

The authors propose a new research model based on social exchange theory (SET) and examine the impact of cost and reward factors. Using 327 survey samples collected from current Metaverse users in South Korea, dual-stage analysis using Partial Least Squares Structural Equation Modeling (PLS-SEM) and an artificial neural network (ANN) were employed to test the study’s hypotheses.

Findings

The results showed that perceived social benefit and trust had significant mediating effects on marketing outcomes, such as loyalty to the seller, product/service attitude, and purchase intention. All antecedents, except perceived performance risk, had a crucial impact on the two mediators. The most interesting finding of this study is the positive influence of knowledge-seeking efforts on perceived social benefits.

Originality/value

This study is the first empirical research to examine the effectiveness of marketing in the Metaverse. It also proposes a new theoretical model based on SET to investigate users’ behavioral intentions regarding marketing in the Metaverse, and confirms its explanatory power. Moreover, the results of this study also offer suggestions to brands on how to market to consumers in the Metaverse.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Access

Year

Last 6 months (341)

Content type

Earlycite article (341)
1 – 10 of 341