Search results

1 – 5 of 5
Article
Publication date: 22 September 2022

Tao Li, Yexin Lyu, Ziyi Guo, Lei Du and Fengyuan Zou

The main purpose is to construct the mapping relationship between garment flat and pattern. Particle swarm optimization–least-squares support vector machine (PSO-LSSVM), the…

Abstract

Purpose

The main purpose is to construct the mapping relationship between garment flat and pattern. Particle swarm optimization–least-squares support vector machine (PSO-LSSVM), the data-driven model, is proposed for predicting the pattern design dimensions based on small sample sizes by digitizing the experience of the patternmakers.

Design/methodology/approach

For this purpose, the sleeve components were automatically localized and segmented from the garment flat by the Mask R-CNN. The sleeve flat measurements were extracted by the Douglas–Peucker algorithm. Then, the PSO algorithm was used to optimize the LSSVM parameters. PSO-LSSVM was trained by utilizing the experience of patternmakers.

Findings

The experimental results demonstrated that the PSO-LSSVM model can effectively improve the generation ability and prediction accuracy in pattern design dimensions, even with small sample sizes. The mean square error could reach 1.057 ± 0.06. The fluctuation range of absolute error was smaller than the others such as pure LSSVM, backpropagation and radial basis function prediction models.

Originality/value

By constructing the mapping relationship between sleeve flat and pattern, the problems of the garment flat objective recognition and pattern design dimensions accurate prediction were solved. Meanwhile, the proposed method overcomes the problem that the parameters are determined by PSO rather than empirically. This framework could be extended to other garment components.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 6 January 2021

Miao Fan and Ashutosh Sharma

In order to improve the accuracy of project cost prediction, considering the limitations of existing models, the construction cost prediction model based on SVM (Standard Support…

Abstract

Purpose

In order to improve the accuracy of project cost prediction, considering the limitations of existing models, the construction cost prediction model based on SVM (Standard Support Vector Machine) and LSSVM (Least Squares Support Vector Machine) is put forward.

Design/methodology/approach

In the competitive growth and industries 4.0, the prediction in the cost plays a key role.

Findings

At the same time, the original data is dimensionality reduced. The processed data are imported into the SVM and LSSVM models for training and prediction respectively, and the prediction results are compared and analyzed and a more reasonable prediction model is selected.

Originality/value

The prediction result is further optimized by parameter optimization. The relative error of the prediction model is within 7%, and the prediction accuracy is high and the result is stable.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 14 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 1 November 2023

Hao Xiang

It is of a great significance for the health monitoring of a liquid rocket engine to build an accurate and reliable fault prediction model. The thrust of a liquid rocket engine is…

Abstract

Purpose

It is of a great significance for the health monitoring of a liquid rocket engine to build an accurate and reliable fault prediction model. The thrust of a liquid rocket engine is an important indicator for its health monitoring. By predicting the changing value of the thrust, it can be judged whether the engine will fail at a certain time. However, the thrust is affected by various factors, and it is difficult to establish an accurate mathematical model. Thus, this study uses a mixture non-parametric regression prediction model to establish the model of the thrust for the health monitoring of a liquid rocket engine.

Design/methodology/approach

This study analyzes the characteristics of the least squares support vector regression (LS-SVR) machine . LS-SVR is suitable to model on the small samples and high dimensional data, but the performance of LS-SVR is greatly affected by its key parameters. Thus, this study implements the advanced intelligent algorithm, the real double-chain coding target gradient quantum genetic algorithm (DCQGA), to optimize these parameters, and the regression prediction model LSSVRDCQGA is proposed. Then the proposed model is used to model the thrust of a liquid rocket engine.

Findings

The simulation results show that: the average relative error (ARE) on the test samples is 0.37% when using LS-SVR, but it is 0.3186% when using LSSVRDCQGA on the same samples.

Practical implications

The proposed model of LSSVRDCQGA in this study is effective to the fault prediction on the small sample and multidimensional data, and has a certain promotion.

Originality/value

The original contribution of this study is to establish a mixture non-parametric regression prediction model of LSSVRDCQGA and properly resolve the problem of the health monitoring of a liquid rocket engine along with modeling the thrust of the engine by using LSSVRDCQGA.

Details

Journal of Quality in Maintenance Engineering, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 19 April 2024

Serhat Yuksel, Hasan Dincer and Alexey Mikhaylov

This paper aims to market analysis on the base many factors. Market analysis must be done correctly to increase the efficiency of smart grid technologies. On the other hand, it is…

Abstract

Purpose

This paper aims to market analysis on the base many factors. Market analysis must be done correctly to increase the efficiency of smart grid technologies. On the other hand, it is not very possible for the company to make improvements for too many factors. The main reason for this is that businesses have constraints both financially and in terms of manpower. Therefore, a priority analysis is needed in which the most important factors affecting the effectiveness of the market analysis will be determined.

Design/methodology/approach

In this context, a new fuzzy decision-making model is generated. In this hybrid model, there are mainly two different parts. First, the indicators are weighted with quantum spherical fuzzy multi SWARA (M-SWARA) methodology. On the other side, smart grid technology investment projects are examined by quantum spherical fuzzy ELECTRE. Additionally, facial expressions of the experts are also considered in this process.

Findings

The main contribution of the study is that a new methodology with the name of M-SWARA is generated by making improvements to the classical SWARA. The findings indicate that data-driven decisions play the most critical role in the effectiveness of market environment analysis for smart technology investments. To achieve success in this process, large-scale data sets need to be collected and analyzed. In this context, if the technology is strong, this process can be sustained quickly and effectively.

Originality/value

It is also identified that personalized energy schedule with smart meters is the most essential smart grid technology investment alternative. Smart meters provide data on energy consumption in real time.

Details

International Journal of Innovation Science, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-2223

Keywords

Article
Publication date: 12 June 2017

Dalian Yang, Yilun Liu, Songbai Li, Jie Tao, Chi Liu and Jiuhuo Yi

The aim of this paper is to solve the problem of low accuracy of traditional fatigue crack growth (FCG) prediction methods.

Abstract

Purpose

The aim of this paper is to solve the problem of low accuracy of traditional fatigue crack growth (FCG) prediction methods.

Design/methodology/approach

The GMSVR model was proposed by combining the grey modeling (GM) and the support vector regression (SVR). Meanwhile, the GMSVR model parameter optimal selection method based on the artificial bee colony (ABC) algorithm was presented. The FCG prediction of 7075 aluminum alloy under different conditions were taken as the study objects, and the performance of the genetic algorithm, the particle swarm optimization algorithm, the n-fold cross validation and the ABC algorithm were compared and analyzed.

Findings

The results show that the speed of the ABC algorithm is the fastest and the accuracy of the ABC algorithm is the highest too. The prediction performances of the GM (1, 1) model, the SVR model and the GMSVR model were compared, the results show that the GMSVR model has the best prediction ability, it can improve the FCG prediction accuracy of 7075 aluminum alloy greatly.

Originality/value

A new prediction model is proposed for FCG combined the non-equidistant grey model and the SVR model. Aiming at the problem of the model parameters are difficult to select, the GMSVR model parameter optimization method based on the ABC algorithm was presented. the results show that the GMSVR model has better prediction ability, which increase the FCG prediction accuracy of 7075 aluminum alloy greatly.

Details

Engineering Computations, vol. 34 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 5 of 5