Search results

1 – 10 of 311
Article
Publication date: 30 April 2024

Reima Daher Alsemiry, Rabea E. Abo Elkhair, Taghreed H. Alarabi, Sana Abdulkream Alharbi, Reem Allogmany and Essam M. Elsaid

Studying the shear stress and pressure resulting on the walls of blood vessels, especially during high-pressure cases, which may lead to the explosion or rupture of these vessels…

Abstract

Purpose

Studying the shear stress and pressure resulting on the walls of blood vessels, especially during high-pressure cases, which may lead to the explosion or rupture of these vessels, can also lead to the death of many patients. Therefore, it was necessary to try to control the shear and normal stresses on these veins through nanoparticles in the presence of some external forces, such as exposure to some electromagnetic shocks, to reduce the risk of high pressure and stress on those blood vessels. This study aims to examines the shear and normal stresses of electroosmotic-magnetized Sutterby Buongiorno’s nanofluid in a symmetric peristaltic channel with a moderate Reynolds number and curvature. The production of thermal radiation is also considered. Sutterby nanofluids equations of motion, energy equation, nanoparticles concentration, induced magnetic field and electric potential are calculated without approximation using small and long wavelengths with moderate Reynolds numbers.

Design/methodology/approach

The Adomian decomposition method solves the nonlinear partial differential equations with related boundary conditions. Graphs and tables show flow features and biophysical factors like shear and normal stresses.

Findings

This study found that when curvature and a moderate Reynolds number are present, the non-Newtonian Sutterby fluid raises shear stress across all domains due to velocity decay, resulting in high shear stress. Additionally, modest mobility increases shear stress across all channel domains. The Sutterby parameter causes fluid motion resistance, which results in low energy generation and a decrease in the temperature distribution.

Originality/value

Equations of motion, energy equation, nanoparticle concentration, induced magnetic field and electric potential for Sutterby nano-fluids are obtained without any approximation i.e. the authors take small and long wavelengths and also moderate Reynolds numbers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 March 2024

Mohammad Dehghan Afifi, Bahram Jalili, Amirmohammad Mirzaei, Payam Jalili and Davood Ganji

This study aims to analyze the two-dimensional ferrofluid flow in porous media. The effects of changes in parameters such as permeability parameter, buoyancy parameter, Reynolds…

Abstract

Purpose

This study aims to analyze the two-dimensional ferrofluid flow in porous media. The effects of changes in parameters such as permeability parameter, buoyancy parameter, Reynolds and Prandtl numbers, radiation parameter, velocity slip parameter, energy dissipation parameter and viscosity parameter on the velocity and temperature profile are displayed numerically and graphically.

Design/methodology/approach

By using simplification, nonlinear differential equations are converted into ordinary nonlinear equations. Modeling is done in the Cartesian coordinate system. The finite element method (FEM) and the Akbari-Ganji method (AGM) are used to solve the present problem. The finite element model determines each parameter’s effect on the fluid’s velocity and temperature.

Findings

The results show that if the viscosity parameter increases, the temperature of the fluid increases, but the velocity of the fluid decreases. As can be seen in the figures, by increasing the permeability parameter, a reduction in velocity and an enhancement in fluid temperature are observed. When the Reynolds number increases, an increase in fluid velocity and temperature is observed. If the speed slip parameter increases, the speed decreases, and as the energy dissipation parameter increases, the temperature also increases.

Originality/value

When considering factors like thermal conductivity and variable viscosity in this context, they can significantly impact velocity slippage conditions. The primary objective of the present study is to assess the influence of thermal conductivity parameters and variable viscosity within a porous medium on ferrofluid behavior. This particular flow configuration is chosen due to the essential role of ferrofluids and their extensive use in engineering, industry and medicine.

Article
Publication date: 27 February 2024

Jacques Abou Khalil, César Jiménez Navarro, Rami El Jeaid, Abderahmane Marouf, Rajaa El Akoury, Yannick Hoarau, Jean-François Rouchon and Marianna Braza

This study aims to investigate the morphing concepts able to manipulate the dynamics of the downstream unsteadiness in the separated shear layers and, in the wake, be able to…

Abstract

Purpose

This study aims to investigate the morphing concepts able to manipulate the dynamics of the downstream unsteadiness in the separated shear layers and, in the wake, be able to modify the upstream shock–boundary layer interaction (SBLI) around an A320 morphing prototype to control these instabilities, with emphasis to the attenuation or even suppression of the transonic buffet. The modification of the aerodynamic performances according to a large parametric study carried out at Reynolds number of 4.5 × 106, Mach number of 0.78 and various angles of attack in the range of (0, 2.4)° according to two morphing concepts (travelling waves and trailing edge vibration) are discussed, and the final benefits in aerodynamic performance increase are evaluated.

Design/methodology/approach

This article examines through high fidelity (Hi-Fi) numerical simulation the effects of the trailing edge (TE) actuation and of travelling waves along a specific area of the suction side starting from practically the most downstream position of the shock wave motion according to the buffet and extending up to nearly the TE. The present paper studies through spectral analysis the coherent structures development in the near wake and the comparison of the aerodynamic forces to the non-actuated case. Thus, the physical mechanisms of the morphing leading to the increase of the lift-to-drag ratio and the drag and noise sources reduction are identified.

Findings

This study investigates the influence of shear-layer and near-wake vortices on the SBLI around an A320 aerofoil and attenuation of the related instabilities thanks to novel morphing: travelling waves generated along the suction side and trailing-edge vibration. A drag reduction of 14% and a lift-to-drag increase in the order of 8% are obtained. The morphing has shown a lift increase in the range of (1.8, 2.5)% for angle of attack of 1.8° and 2.4°, where a significant lift increase of 7.7% is obtained for the angle of incidence of 0° with a drag reduction of 3.66% yielding an aerodynamic efficiency of 11.8%.

Originality/value

This paper presents results of morphing A320 aerofoil, with a chord of 70cm and subjected to two actuation kinds, original in the state of the art at M = 0.78 and Re = 4.5 million. These Hi-Fi simulations are rather rare; a majority of existing ones concern smaller dimensions. This study showed for the first time a modified buffet mode, displaying periodic high-lift “plateaus” interspersed by shorter lift-decrease intervals. Through trailing-edge vibration, this pattern is modified towards a sinusoidal-like buffet, with a considerable amplitude decrease. Lock-in of buffet frequency to the actuation is obtained, leading to this amplitude reduction and a drastic aerodynamic performance increase.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 February 2024

Vishal Singh and Arvind K. Rajput

The present paper aims to analyse the synergistic effect of pocket orientation and piezo-viscous-polar (PVP) lubrication on the performance of multi-recessed hybrid journal…

Abstract

Purpose

The present paper aims to analyse the synergistic effect of pocket orientation and piezo-viscous-polar (PVP) lubrication on the performance of multi-recessed hybrid journal bearing (MHJB) system.

Design/methodology/approach

To simulate the behaviour of PVP lubricant in clearance space of the MHJB system, the modified form of Reynolds equation is numerically solved by using finite element method. Galerkin’s method is used to obtain the weak form of the governing equation. The system equation is solved by Gauss–Seidal iterative method to compute the unknown values of nodal oil film pressure. Subsequently, performance characteristics of bearing system are computed.

Findings

The simulated results reveal that the location of pressurised lubricant inlets significantly affects the oil film pressure distribution and may cause a significant effect on the characteristics of bearing system. Further, the use of PVP lubricant may significantly enhances the performance of the bearing system, namely.

Originality/value

The present work examines the influence of pocket orientation with respect to loading direction on the characteristics of PVP fluid lubricated MHJB system and provides vital information regarding the design of journal bearing system.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2023-0241/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 2 May 2024

Lingfei Zhang, Longfeng Hou and Yihao Tao

Water jet propulsion is widely used in various military and civilian fields due to its advantages of simple structure and high propulsion efficiency. The process of mooring…

Abstract

Purpose

Water jet propulsion is widely used in various military and civilian fields due to its advantages of simple structure and high propulsion efficiency. The process of mooring involves utilizing specially designed equipment to secure a ship at a designated berth. During the process of water jet propulsion, the single propeller operates within a complex and turbulent three-dimensional flow. Hence, studying the coupling between the water jet propeller and the hull is critical to comprehending the characteristics of the device and the distribution of the flow field in detail.

Design/methodology/approach

Firstly, we conducted computational fluid dynamics (CFD)-based self-propulsion calculations to evaluate the interaction between the hull and the propeller. We subsequently analyzed the propeller's performance and the forces acting on the hull to understand how the presence or absence of the hull influenced the water jet propeller. Finally, we performed calculations and analysis of the cavitation characteristics of the coupling between the hull and the water jet propeller, considering different rotational speeds and water depths at the bottom of the pool.

Findings

The study demonstrated that the presence of the hull boundary layer under the hull-propeller coupling condition led to reduced uniformity of propeller inlet flow and lower efficiency of the propulsion pump. However, it also increased the bias toward low-flow conditions. Additionally, increasing the impeller speed led to a gradual increase in the cavitation volume within the water jet propeller, resulting in a gradual decrease in the propeller's performance.

Originality/value

This research provides the technical support required for effective design and operation of water jet propulsion systems. This paper involves studying and analyzing the performance and flow field of the coupling between the hull and propeller under mooring conditions with a specified hull model.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 23 October 2023

Mallikarjun S. Bhandiwad, B.M. Dodamani and Deepak M.D.

The present work involves analytical and experimental investigation of sloshing in a two-dimensional rectangular tank including the effect of porous baffles to control and/or…

Abstract

Purpose

The present work involves analytical and experimental investigation of sloshing in a two-dimensional rectangular tank including the effect of porous baffles to control and/or reduce the wave motion in the sloshing tank. The purpose of this study is to assess the analytical solutions of the drag coefficient effect on porous baffles performance to track free surface motion variation in the sloshing tank by comparison with experimental shake table tests under a range of sway excitation.

Design/methodology/approach

The linear second-order ordinary differential equations for liquid sloshing in the rectangular tank were solved using Newmark’s beta method and obtained the analytical solutions for liquid sloshing with dual vertical porous baffles of full submergence depths in a sway-oscillated rectangular tank following the methodology similar to Warnitchai and Pinkaew (1998) and Tait (2008).

Findings

The porous baffles significantly reduce wave elevation in the varying filled levels of the tank compared to the baffle-free tank under the range of excitation frequencies. It is observed that the Reynolds number-dependent drag coefficient for porous baffles in the tank can significantly reduce the sloshing elevations and is found to be effective to achieve higher damping compared to the porosity-dependent drag coefficient for porous baffles in the sloshing tank. The analytical model’s response to free surface elevation variations in the sloshing tank was compared with the experiment’s test results. The analytical results matched with shake table test results with a quantitative difference near the first resonant frequency.

Research limitations/implications

The scope of the study is limited to porous baffles performance under range sway motion and three different filling levels in the tank. The porous baffle performance includes Reynolds number dependent drag coefficient to explore the damping effect in the sloshing tank.

Originality/value

The porous baffles with low-level porosities in the sloshing tank have many engineering applications where the first resonant mode of sloshing in the tank is more important. The porous baffle drag coefficient is an important parameter to study the baffle’s damping effect in sloshing tanks. Hence, obtained analytical solution for liquid sloshing in the rectangular tank with Reynolds number as well as porosity-dependent drag coefficient (model 1) and porosity-dependent drag coefficient porous baffles (model 2) performance is discussed. The model’s test results were validated using a series of shake table sloshing experiments for three fill levels in the tank with sway motion at various excitation frequencies covering the first four sloshing resonant modes.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 20 March 2024

Hakan F. Oztop, Burak Kiyak and Ishak Gökhan Aksoy

This study aims to focus on understanding how different jet angles and Reynolds numbers influence the phase change materials’ (PCMs) melting process and their capacity to store…

Abstract

Purpose

This study aims to focus on understanding how different jet angles and Reynolds numbers influence the phase change materials’ (PCMs) melting process and their capacity to store energy. This approach is intended to offer novel insights into enhancing thermal energy storage systems, particularly for applications where heat transfer efficiency and energy storage are critical.

Design/methodology/approach

The research involved an experimental and numerical analysis of PCM with a melting temperature range of 22 °C–26°C under various conditions. Three different jet angles (45°, 90° and 135°) and two container angles (45° and 90°) were tested. Additionally, two different Reynolds numbers (2,235 and 4,470) were used to explore the effects of jet outlet velocities on PCM melting behaviour. The study used a circular container and analysed the melting process using the hot air inclined jet impingement (HAIJI) method.

Findings

The obtained results showed that the average temperature for the last time step at Ф = 90° and Re = 4,470 is 6.26% higher for Ф = 135° and 14.23% higher for Ф = 90° compared with the 45° jet angle. It is also observed that the jet angle, especially for Ф = 90°, is a much more important factor in energy storage than the Reynolds number. In other words, the jet angle can be used as a passive control parameter for energy storage.

Originality/value

This study offers a novel perspective on the effective storage of waste heat transferred with air, such as exhaust gases. It provides valuable insights into the role of jet inclination angles and Reynolds numbers in optimizing the melting and energy storage performance of PCMs, which can be crucial for enhancing the efficiency of thermal energy storage systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 24 April 2024

Qingyang Wang, Weifeng Wu, Ping Zhang, Chengqiang Guo and Yifan Yang

To guide the stable radius clearance choice of water-lubricated bearings for single screw compressors, this paper aims to analyze the effects of turbulence and cavitation on…

Abstract

Purpose

To guide the stable radius clearance choice of water-lubricated bearings for single screw compressors, this paper aims to analyze the effects of turbulence and cavitation on bearing performance under two conditions of specified external load and radius clearance.

Design/methodology/approach

A modified Reynolds equation considering turbulence and cavitation is adopted, based on the Jakobsson–Floberg–Olsson boundary condition, Ng–Pan model and turbulent factors. The equation is solved using the finite difference method and successive over-relaxation method to investigate the bearing performance.

Findings

The turbulent effect can increase the hydrodynamic pressure and cavitation. In addition, the turbulent effect can lead to an increase in the equilibrium radius clearance. The turbulent region exhibits a higher load capacity and cavitation rate. However, the increased cavitation negatively impacts the frictional coefficient and end flow rate. The impact of turbulence increases as the radius clearance decreases. As the rotating speed increases, the turbulence effect has a greater impact on the bearing characteristics.

Originality/value

The research can provide theoretical support for the design of water-lubricated journal bearings used in high-speed water-lubricated single screw compressors.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2024-0029/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 12 April 2024

Xiaodong Yu, Guangqiang Shi, Hui Jiang, Ruichun Dai, Wentao Jia, Xinyi Yang and Weicheng Gao

This paper aims to study the influence of cylindrical texture parameters on the lubrication performance of static and dynamic pressure thrust bearings (hereinafter referred to as…

Abstract

Purpose

This paper aims to study the influence of cylindrical texture parameters on the lubrication performance of static and dynamic pressure thrust bearings (hereinafter referred to as thrust bearings) and to optimize their lubrication performance using multiobjective optimization.

Design/methodology/approach

The influence of texture parameters on the lubrication performance of thrust bearings was studied based on the modified Reynolds equation. The objective functions are predicted through the BP neural network, and the texture parameters were optimized using the improved multiobjective ant lion algorithm (MOALA).

Findings

Compared with smooth surface, the introduction of texture can improve the lubrication properties. Under the optimization of the improved algorithm, when the texture diameter, depth, spacing and number are approximately 0.2 mm, 0.5 mm, 5 mm and 34, respectively, the loading capacity is increased by around 27.7% and the temperature is reduced by around 1.55°C.

Originality/value

This paper studies the effect of texture parameters on the lubrication properties of thrust bearings based on the modified Reynolds equation and performs multiobjective optimization through an improved MOALA.

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 16 January 2024

Mohamed Abd Alsamieh

In this study a numerical analysis of the elastohydrodynamic lubrication point contact problem in the unsteady state of reciprocating motion is presented. The effects of…

Abstract

Purpose

In this study a numerical analysis of the elastohydrodynamic lubrication point contact problem in the unsteady state of reciprocating motion is presented. The effects of frequency, stroke length and load on film thickness and pressure variation during one operating cycle are discussed. The general tribological behavior of elastohydrodynamic lubrication during reciprocating motion is explained.

Design/methodology/approach

The system of equations of Reynolds, film thickness considering surface deformation and load balance equations are solved using the Newton-Raphson technique with the Gauss-Seidel iteration method. Numerical solutions were performed with a sinusoidal contact surface velocity to simulate reciprocating elastohydrodynamics. The methodology is validated using historical experimental measurements/observations and numerical predictions from other researchers.

Findings

The numerical results showed that the change in oil film during a stroke is controlled by both wedge and squeeze effects. When the surface velocity is zero at the stroke end, the squeeze effect is most noticeable. As the frequency increases, the general trend of central and minimum film thickness increases. With the same entraining speed but different stroke lengths, the properties of the oil film differ from one another, with an increase in stroke length leading to a reduction in film thickness. Finally, the numerical results showed that the overall film thickness decreases with increasing load.

Originality/value

General tribological behaviors of elastohydrodynamic lubricating point contact, represented by pressure and film thickness variations over time and profiles, are analyzed under reciprocating motion during one working cycle to show the effects of frequency, stroke length and applied load.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 311