Search results

1 – 10 of 14
Article
Publication date: 1 April 1996

B.S.V.P. Patnaik, K.N. Seetharamu and P.A. Aswatha Narayana

A finite element method is used to study the effect of flow past acircular cylinder with an integral wake splitter. A fractional step algorithmis employed to solve the…

Abstract

A finite element method is used to study the effect of flow past a circular cylinder with an integral wake splitter. A fractional step algorithm is employed to solve the Navier‐Stokes and Energy equations with a Galerkin weighted residual formulation. The vortex shedding process is simulated and the effect of splitter addition on the time period of shedding is studied at a Reynolds number of 200 and a blockage ratio of 0.25. The effect of splitter and the Strouhal number and heat transfer augmentation per unit pressure drop has been investigated.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 6 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 April 1993

B.V.K. SATYA SAI, K.N. SEETHARAMU, P.A. ASWATHA NARAYANA and J.N. REDDY

A finite element method based on the Eulerian velocity correction method has been used to analyse the laminar natural convection in an annular cavity. Unsteady, incompressible…

Abstract

A finite element method based on the Eulerian velocity correction method has been used to analyse the laminar natural convection in an annular cavity. Unsteady, incompressible, axisymmetric Navier‐Stokes equations have been made use of. Different radius ratios of the annular cavity have been considered to investigate the effect of the radius of curvature on the heat transfer coefficient.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 3 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 February 1999

M.S. Rajagopal, K.N. Seetharamu and P.A. Aswatha Narayana

Accurate prediction of temperature distribution in an electrical machine at the design stage is becoming increasingly important. It is essential to know the locations and…

Abstract

Accurate prediction of temperature distribution in an electrical machine at the design stage is becoming increasingly important. It is essential to know the locations and magnitudes of hot spot temperatures for optimum design of electrical machines. A methodology based on axi‐symmetric finite element formulation has been developed to solve the conduction‐convection problem in radial cooled machines using a new eight noded solid‐fluid coupled element. The axi‐symmetric model adopted is formulated purely from dimensional data, property data and published convective correlations. Steady state temperatures have been determined for 102 kW radial cooled motor at 100 percent and 75 percent loads and are validated with experimental results obtained from heat run tests. Parametric studies have been carried out to study the effect of critical parameters on temperature distribution and for optimising the design.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 9 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 January 2006

N. Aizar Abdul Karim, P.A. Aswatha Narayana and K.N. Seetharamu

To demonstrate thermal modeling technique for a through hole light emitting diode (LED) package using a commercial computational fluid dynamic (CFD) code and to improve its…

1469

Abstract

Purpose

To demonstrate thermal modeling technique for a through hole light emitting diode (LED) package using a commercial computational fluid dynamic (CFD) code and to improve its thermal performance through a series of sensitivity analyses.

Design/methodology/approach

Thermal resistance of the standard through hole LED is calculated using the simulation result. The result is then compared with actual measurement to establish the correct model. Using the validated model, series of sensitivity analyses are carried out through simulation. Taking the most optimum design, a prototype of the improved LED is fabricated and the thermal resistance performance is compared with the simulation result.

Findings

The simulation result of the standard LED is close to actual measurement with 5 percent difference. The thermal resistance of the through hole LED is reduced by changing the leadframe material from mild steel to copper alloy and increasing the leadframe width. Combination of both design changes resulted in thermal resistance reduction of 51 percent.

Originality/value

This paper identified the practicality of using CFD codes in achieving fast and accurate result in thermal modeling of LED package and also offers solutions on reducing the LED thermal resistance.

Details

Microelectronics International, vol. 23 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Abstract

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 5
Type: Research Article
ISSN: 0961-5539

Article
Publication date: 19 December 2018

Ameer Ahamad Nandalur, Sarfaraz Kamangar and Irfan Anjum Badruddin

The purpose of this study was to analyze the heat transfer in a square porous cavity that has a solid block placed at its center. The prime focus of this study is to investigate…

Abstract

Purpose

The purpose of this study was to analyze the heat transfer in a square porous cavity that has a solid block placed at its center. The prime focus of this study is to investigate the effect of size of the square solid block and other physical parameters on the heat transfer rate from the hot surface into the porous medium. The left vertical surface of cavity is maintained at a hot temperature and the right vertical surface at a cool temperature, Tc. The finite element method is used to simplify the governing equations and is solved iteratively. It is noted that the size of the solid block plays a vital role in dictating the heat transfer from the hot surface to porous medium.

Design/methodology/approach

The current work is based on finite element formulation of a square porous cavity that has a solid square block placed at its center. Governing equations were solved iteratively.

Findings

The size of the solid block has a pronounced effect on the heat transfer behavior inside the porous cavity.

Originality/value

This study highlights the heat transfer due to a conducting square solid block at mid of porous cavity.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 November 2017

Irfan Anjum Badruddin, Azeem Khan, Mohd Yamani Idna Idris, N. Nik-Ghaali, Salman Ahmed N.J. and Abdullah A.A.A. Al-Rashed

The purpose of this paper is to highlight the advantages of a simplified algorithm to solve the problem of heat and mass transfer in porous medium by reducing the number of…

Abstract

Purpose

The purpose of this paper is to highlight the advantages of a simplified algorithm to solve the problem of heat and mass transfer in porous medium by reducing the number of partial differential equations from four to three.

Design/methodology/approach

The approach of the present paper is to develop a simplified algorithm to reduce the number of equations involved in conjugate heat transfer in porous medium.

Findings

Developed algorithm/method has many advantages over conventional method of solution for conjugate heat transfer in porous medium.

Research limitations/implications

The current work is applicable to conjugate heat transfer problem.

Practical implications

The developed algorithm is useful in reducing the number of equations to be solved, thus reducing the computational resources required.

Originality/value

Development of simplified algorithm and comparison with conventional method.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 February 2002

K. Murugesan, H.R. Thomas and P.J. Cleall

A numerical study is carried out to investigate the influence of multistage drying regimes on the drying kinematics of a porous material. In particular the effects of varying the…

Abstract

A numerical study is carried out to investigate the influence of multistage drying regimes on the drying kinematics of a porous material. In particular the effects of varying the conditions of the drying medium are studied. The drying model for the solid is developed based on the continuum approach. A series of simulations of the drying behaviour of a rectangular brick with varying temperature, heat transfer coefficient and relative humidity of the drying medium are undertaken. It is found that the total drying time is mainly dependent on the relative humidity of the drying medium. Also condensation is predicted on the surface of the brick, with the quantity of condensation being directly linked to the relative humidity and temperature of the drying medium. Overall it is concluded that multistage drying regimes are useful in reducing the overall drying time whilst avoiding detrimental shrinkage during the constant drying period.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 12 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 November 2018

Sahin Yigit and Nilanjan Chakraborty

This paper aims to numerically analyse natural convection of yield stress fluids in rectangular cross-sectional cylindrical annular enclosures. The laminar steady-state…

Abstract

Purpose

This paper aims to numerically analyse natural convection of yield stress fluids in rectangular cross-sectional cylindrical annular enclosures. The laminar steady-state simulations have been conducted for a range of different values of normalised internal radius (ri/L 1/8 to 16, where L is the difference between outer and inner radii); aspect ratio (AR = H/L from 1/8 to 8 where H is the enclosure height); and nominal Rayleigh number (Ra from 103 to 106) for a single representative value of Prandtl number (Pr is 500).

Design/methodology/approach

The Bingham model has been used to mimic the yield stress fluid motion, and numerical simulations have been conducted for both constant wall temperature (CWT) and constant wall heat flux (CWHF) boundary conditions for the vertical side walls. The conservation equations of mass, momentum and energy have been solved in a coupled manner using the finite volume method where a second-order central differencing scheme is used for the diffusive terms and a second-order up-wind scheme is used for the convective terms. The well-known semi-implicit method for pressure-linked equations algorithm is used for the coupling of the pressure and velocity.

Findings

It is found that the mean Nusselt number based on the inner periphery Nu¯i increases (decreases) with an increase in Ra (Bn) due to augmented buoyancy (viscous) forces irrespective of the boundary condition. The ratio of convective to diffusive thermal transport increases with increasing ri/L for both Newtonian (i.e. Bn = 0) and Bingham fluids regardless of the boundary condition. Moreover, the mean Nusselt number Nu¯i normalised by the corresponding Nusselt number due to pure conductive transport (i.e. Nu¯i/(Nu¯i)cond) shows a non-monotonic trend with increasing AR in the CWT configuration for a given set of values of Ra, Pr, Li for both Newtonian (i.e. Bn = 0) and Bingham fluids, whereas Nu¯i/(Nu¯i)cond increases monotonically with increasing AR in the CWHF configuration. The influences of convective thermal transport strengthen while thermal diffusive transport weakens with increasing AR, and these competing effects are responsible for the non-monotonic Nu¯i/(Nu¯i)cond variation with AR in the CWT configuration.

Originality/value

Detailed scaling analysis is utilised to explain the observed influences of Ra, BN, ri/L and AR, which along with the simulation data has been used to propose correlations for Nu¯i.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 21 February 2024

Mohamed Bechir Ben Hamida

This study investigates the impact of three parameters such as: number of LED chips, pitch and LED power on the junction temperature of LEDs using a best heat sink configuration…

Abstract

Purpose

This study investigates the impact of three parameters such as: number of LED chips, pitch and LED power on the junction temperature of LEDs using a best heat sink configuration selected according to a lower temperature. This study provides valuable insights into how to design LED arrays with lower junction temperatures.

Design/methodology/approach

To determine the best configuration of a heat sink, a numerical study was conducted in Comsol Multiphysics on 10 different configurations. The configuration with the lowest junction temperature was selected for further analysis. The number of LED chips, pitch and LED power were then varied to determine the optimal configuration for this heat sink. A general equation for the average LED temperature as a function of these three factors was derived using Minitab software.

Findings

Among 10 configurations of the rectangular heat sink, we deduce that the best configuration corresponds to the first design having 1 mm of width, 0.5 mm of height and 45 mm of length. The average temperature for this design is 50.5 C. For the power of LED equal to 50 W–200 W, the average temperature of this LED drops when the number of LED chips reduces and the pitch size decreases. Indeed, the best array-LED corresponds to 64 LED chips and a pitch size of 0.5 mm. In addition, a generalization equation for average temperature is determined as a function of the number of LED chips, pitch and power of LED which are key factors for reducing the Junction temperature.

Originality/value

The study is original in its focus on three factors that have not been studied together in previous research. A numerical simulation method is used to investigate the impact of the three factors, which is more accurate and reliable than experimental methods. The study considers a wide range of values for the three factors, which allows for a more comprehensive understanding of their impact. It derives a general equation for the average temperature of the LED, which can be used to design LED arrays with desired junction temperatures.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of 14