Search results

1 – 10 of 17
Article
Publication date: 1 February 1991

T. KUNDU, R.P. MATHUR and C.S. DESAI

A new hybrid method based on three‐dimensional finite element idealization in the near field and a semi‐analytic scheme using the principles of wave propagation in multilayered…

Abstract

A new hybrid method based on three‐dimensional finite element idealization in the near field and a semi‐analytic scheme using the principles of wave propagation in multilayered half space in the far field is proposed for the dynamic soil‐structure interaction analysis. The distinguishing feature of this technique from direct or indirect boundary integral techniques is that in boundary integral techniques a distribution of sources are considered at the near field boundary. Strengths of these sources are then adjusted to satisfy the continuity conditions across the near‐field/far‐field interface. In the proposed method unknown sources are placed not at the near field boundary but at the location of the structure. Then the Saint‐Venant's principle is utilized to justify that at a distant point the effect of the structure's vibration can be effectively modelled by an equivalent vibrating point force and vibrating moment at the structure's position. Thus the number of unknowns can be greatly reduced here. For soil‐structure interaction analysis by this method one needs to consider only three unknowns (two force components and one in‐plane moment) for a general two‐dimensional problem and six unknowns (three force components and three moment components) for a general three‐dimensional problem. When a vertically propagating elastic wave strikes a structure which is symmetric about two mutually perpendicular vertical planes the structure can only vibrate vertically for dilatational waves and horizontally for shear waves. Under this situation the number of unknowns is reduced to only one whereas in boundary integral and boundary element techniques the number of unknowns is dependent on the number of nodes at the near field boundary, which is generally much greater than six. Several example problems are solved in this paper using this technique for both flexible and rigid structures in multilayered soil media.

Details

Engineering Computations, vol. 8 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 November 1997

Jiahao Lin, Jianjun Li, Wenshou Zhang and F.W. Williams

Proposes a new approach for analysing the stationary random response of complex structures located in a non‐homogeneous stochastic field. The approach is a kind of complete CQC…

Abstract

Proposes a new approach for analysing the stationary random response of complex structures located in a non‐homogeneous stochastic field. The approach is a kind of complete CQC method because the cross‐correlation terms between both the participant modes and the ground joint excitations are included in the response calculations. Also takes into account the effect of the loss of coherency between ground joints.

Details

Engineering Computations, vol. 14 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 13 April 2022

Jian Li, Xinlei Yan, Feifei Zhao and Xin Zhao

The purpose of this paper is to solve the problem that the location of the initiation point cannot be measured accurately in the shallow underground space, this paper proposes a…

Abstract

Purpose

The purpose of this paper is to solve the problem that the location of the initiation point cannot be measured accurately in the shallow underground space, this paper proposes a method, which is based on fusion of multidimensional vibration sensor information, to locate single shallow underground sources.

Design/methodology/approach

First, in this paper, using the characteristics of low multipath interference and good P-wave polarization in the near field, the adaptive covariance matrix algorithm is used to extract the polarization angle information of the P-wave and the short term averaging/long term averaging algorithm is used to extract the first break travel time information. Second, a hybrid positioning model based on travel time and polarization angle is constructed. Third, the positioning model is taken as the particle update fitness function of quantum-behaved particle swarm optimization and calculation is performed in the hybrid positioning model. Finally, the experiment verification is carried out in the field.

Findings

The experimental results show that, with root mean square error, spherical error probable and fitness value as evaluation indicators, the positioning performance of this method is better than that without speed prediction. And the positioning accuracy of this method has been improved by nearly 30%, giving all of the three tests a positioning error within 0.5 m and a fitness less than 1.

Originality/value

This method provides a new idea for high-precision positioning of shallow underground single source. It has a certain engineering application value in the fields of directional demolition of engineering blasting, water inrush and burst mud prediction, fuze position measurement, underground initiation point positioning of ammunition, mine blasting monitoring and so on.

Details

Sensor Review, vol. 42 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 9 August 2013

Rajneesh Kumar and Rajeev Kumar

The purpose of this research is to study the reflection and transmission of elastic waves at the interface of an elastic half‐space and initially stressed thermoelastic diffusion…

Abstract

Purpose

The purpose of this research is to study the reflection and transmission of elastic waves at the interface of an elastic half‐space and initially stressed thermoelastic diffusion with voids half‐space.

Design/methodology/approach

Two‐dimensional model has been considered of an isotropic elastic half‐space (Medium I) lying over a homogeneous isotropic generalized initially stressed thermoelastic diffusion with voids half‐space (Medium II). There exist two waves, P‐wave and SV‐wave, in isotropic elastic half‐space and four quasi‐longitudinal waves, namely, quasi‐longitudinal wave (QP‐mode), quasi‐longitudinal mass diffusive wave (QMD‐mode), quasi‐longitudinal thermal wave (QPT‐mode) and quasi‐longitudinal volume fractional wave (QPV‐mode), and one quasi‐transverse wave (QSV‐mode) exists in initially stressed thermoelastic diffusion with voids half‐space.

Findings

The energy ratios of these waves are computed along various directions of incident wave, and it is found that the sum of all energy ratios is exactly unity at each value of incident angle. The amplitude ratios of various waves have been obtained numerically.

Originality/value

Reflection and transmission of an elastic medium is of great practical importance. Since valuable organic and inorganic deposits beneath the earth surface are difficult to detect by drilling randomly, wave propagation is the simplest and most economic technique for these and does not require any drilling through the earth. Almost all the oil companies rely on seismic interpretation for selecting the sites for exploratory oil wells because seismic wave methods have higher accuracy, have higher resolution and are more economical, as compared to drilling which is expansive and time consuming.

Details

Multidiscipline Modeling in Materials and Structures, vol. 9 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 3 December 2020

Abdellah Boudina and Malek Hammoutene

This paper aims to artificially generate seismic accelerograms compatible with the response spectrum imposed as a function of the given environmental parameters such as magnitude…

Abstract

Purpose

This paper aims to artificially generate seismic accelerograms compatible with the response spectrum imposed as a function of the given environmental parameters such as magnitude, epicentral distance and type of soil. This study is necessary for the non-linear dynamic analysis of structures in regions where real seismic records are not available.

Design/methodology/approach

First, a stochastic iterative method is used to estimate the spectral densities of acceleration power from the respective target response spectra. Thereafter, based on the superposition of seismic waves, a subsequent iterative procedure, which implicitly takes into account the non-stationary character of temporal intensity content of strong ground motions, is developed to synthesize, from these power spectral density, the corresponding acceleration time histories. The phase contents of the ground acceleration samples, thus obtained, are generated using a probability density function of phase derivatives with characteristic parameters estimated from seismological considerations. When based on seismic codes spectrum compatible criteria, this procedure can be used to generate strong ground motions for structural design.

Findings

The results found show that the forms of acceleration of the target and the simulated signals have similar characteristics in terms of strong motion durations, the peak ground acceleration values, corresponding time of occurrence and also, the corresponding cumulative energy functions follow practically the same pattern of variations.

Originality/value

The aim of this study is to generate seismic accelerograms compatible with regulatory spectra by the composition of the three acceleration duration segments based on environmental parameters (magnitude, epicentral distance and type of soil) and which subsequently serves to control the time envelope of the generated signals, and therefore the random generation of phase derivatives, which has not been previously treated.

Details

World Journal of Engineering, vol. 18 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 3 December 2018

Toufiq Ouzandja and Mohamed Hadid

This paper aims to present the investigation of the linear and nonlinear seismic site response of a saturated inhomogeneous poroviscoelastic soil profile for different soil…

Abstract

Purpose

This paper aims to present the investigation of the linear and nonlinear seismic site response of a saturated inhomogeneous poroviscoelastic soil profile for different soil properties, such as pore-water saturation, non-cohesive fines content FC, permeability k, porosity n and coefficient of uniformity Cu.

Design/methodology/approach

The inhomogeneous soil profile is idealized as a multi-layered saturated poroviscoelastic medium and is characterized by the Biot’s theory, with a shear modulus varying continuously with depth according to the Wichtmann’s model. Seismic response analysis has been evaluated through a computational model, which is based on the exact stiffness matrix method formulated in the frequency domain assuming that the incoming seismic waves consist of inclined P-SV waves.

Findings

Unlike the horizontal seismic response, the results indicate that the vertical one is strongly affected by the pore water saturation. Moreover, in the case of fully saturated soil profile, the same vertical response spectra are found for the two cases of soil behavior, linear and nonlinear.

Originality/value

This research is a detailed study of the geotechnical soil properties effect on the bi-directional seismic response of saturated inhomogeneous poroviscoelastic soil profile, which has not been treated before; the results are presented in terms of the peak acceleration ratio, as well as the free-field response spectra and the spectral ratio (V/H).

Details

World Journal of Engineering, vol. 15 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 8 June 2015

Lei Li and Qing Liu

– The purpose of this paper is to propose a modal method to calculate the band gaps of one-dimensional (1D) phononic crystals.

Abstract

Purpose

The purpose of this paper is to propose a modal method to calculate the band gaps of one-dimensional (1D) phononic crystals.

Design/methodology/approach

The phononic crystals have modes with exponential form envelope in the band gaps, however, outside the band gaps the modes are of amplitude modulation periodic form. Thus the start and end frequencies of band gaps can be determined from the existence conditions of periodic modes. So, the band gaps calculation of 1D phononic crystal is transformed into the existence discussion of periodic solution of mode shapes equation. The results are verified by finite element harmonic response analysis.

Findings

At the start and end frequencies of the band gap, the mode equation have solution with period of lattice constant.

Originality/value

Compared with the traditional theoretical methods, the proposed modal method has a clearer principle and easier calculation.

Details

Multidiscipline Modeling in Materials and Structures, vol. 11 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 April 1984

E. Bayo and E.L. Wilson

A general time domain finite element formulation and several efficient numerical techniques are combined to form a new method of analysis for the solution of three‐dimensional…

Abstract

A general time domain finite element formulation and several efficient numerical techniques are combined to form a new method of analysis for the solution of three‐dimensional soil‐structure interaction problems in the time domain. For elastic systems the method is a very cost effective alternative to the frequency domain approach. However, the major advantage of the new method is its ability to be extended to non‐linear behaviour such as separation of foundation and soil or non‐linear material. The general equations of motion for the linear cases are expressed in terms of the relative displacements of the soil‐structure system with respect to the displacements of the buried part of the structure (volume methods). This formulation allows the load vector to be an exclusive function of the free field accelerations at the foundation level. The non‐linear case requires that the equation of motion be established in terms of the total interaction displacements. The soil is modelled with three‐dimensional solid elements in the near field and axisymmetric elements in the far field. Coupling between the two systems is enforced by expanding the displacements of the solid elements in terms of the axisymmetric ones. Reduction in the number of degrees of freedom is achieved by the use of orthogonal sets of Ritz functions. The reduced system of equations is uncoupled and solved very efficiently using the complex eigenvectors. A numerical example consisting of the response of a structure resting on a homogeneous half‐space is solved using the new method and one of the approaches in the frequency domain. Results given by both methods are remarkably similar.

Details

Engineering Computations, vol. 1 no. 4
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 20 October 2023

Dragan D. Milašinović

The purpose of this paper is to describe various aspects of the visco-elastoplastic (VEP) behavior of porous-hardened concrete samples in relation to standard tests.

Abstract

Purpose

The purpose of this paper is to describe various aspects of the visco-elastoplastic (VEP) behavior of porous-hardened concrete samples in relation to standard tests.

Design/methodology/approach

The problem is formulated on the basis of the rheological-dynamic analogy (RDA). In this study, changes in creep coefficient, Poisson's ratio, damage variables, modulus of elasticity, strength and angle of internal friction as a function of porosity are defined by P and S wave velocities. The RDA model provides a description of the degradation process of material properties from their peak state to their ultimate values using void volume fraction (VVF).

Findings

Compared to numerous versions of acoustic emission tracking developed to analyze the behavior of total wave propagation in inhomogeneous media with density variations, the proposed model is comprehensive in interpretation and consistent with physical understanding. The comparison of the damage variables with the theoretical variables under the assumption of spherical voids in the spherical representative volume element (RVE) shows a satisfactory agreement of the results for all analyzed samples if the maximum porosities are used for comparison.

Originality/value

The paper presents a new mathematical-physical method for examining the effect of porosity on the characteristics of hardened concrete. Porosity is essentially related to density variations. Therefore, it was logical to define the limit values of porosity using the strain energy density.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 2 November 2015

Christophe Rouzaud, Fabrice Gatuingt, Olivier Dorival, Guillaume Herve and Louis Kovalevsky

The determination of the vibration induced by an aircraft impact on an industrial structure requires dynamic studies. The determination of the response by using classical finite…

Abstract

Purpose

The determination of the vibration induced by an aircraft impact on an industrial structure requires dynamic studies. The determination of the response by using classical finite element method associated with explicit numerical schemes requires significant calculation time, especially during the transient stage. This kind of calculation requires several load cases to be analyzed in order to consider a wide range of scenarios. Moreover, a large frequency range has to be appropriately considered and therefore the mesh has to be very fine, resulting in a refined time discretization. The purpose of this paper is to develop new ways for calculating the shaking of reinforced concrete structures following a commercial aircraft impact (see Figure 1). The cutoff frequency for this type of loading is typically within the 50-100 Hz range, which would be referred to as the medium-frequency range.

Design/methodology/approach

Taking into account this type of problem and assuming that the structure is appropriately sized to withstand an aircraft impact, the vibrations induced by the shock bring about shaking of the structure. Then these vibrations can travel along the containment building, as directly linked with the impact zone, but also in the inner part of the structure due to the connection with the containment building by the raft. So the excited frequency range, due to the impact of a commercial aircraft, contains two frequency ranges: low frequencies (less than ten wavelengths in the structure) and medium frequencies (between ten and 100 wavelengths). The strategy, which is presented in this paper, is inscribed in the context of the verification of inner equipment under this kind of shaking. The non-linear impact zone is assumed to have been delimited with classical finite element simulations. In this paper the authors only focus on the response of the linear part of the structure. This phenomenon induces a non-linear localized area around the impact zone.

Findings

So the medium frequencies can therefore induce significant displacements and stresses at the level of equipment and thus cause damage if the structure is not dimensioning to this frequency range.

Research limitations/implications

In this context the use of finite elements method for the resolution of the shaking implies a spatial discretization in correlation with the number of wavelengths to represent, and thus a long computation time especially for medium frequencies. That is why in the case of a coarse mesh the medium-frequency range is ignored. For example, a concrete structure with a characteristic dimension of about 30 and 1 m of thickness, may not represent frequencies higher than 16 Hz with a mesh size of 1 m (assuming ten elements per wavelength).

Practical implications

The paper includes implications for proper dimensioning civil engineering structures subjected to a load case containing a large frequency range.

Originality/value

This paper shows the gain of the strategy using appropriate method to medium frequencies compared to conventional method such as finite elements.

Details

Engineering Computations, vol. 32 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 17