Search results

1 – 10 of over 1000
Open Access
Article
Publication date: 10 July 2019

Hoyon Hwang, Jaeyoung Cha and Jon Ahn

The purpose of this paper is to present the development of an optimal design framework for high altitude long endurance solar unmanned aerial vehicle. The proposed solar aircraft…

3902

Abstract

Purpose

The purpose of this paper is to present the development of an optimal design framework for high altitude long endurance solar unmanned aerial vehicle. The proposed solar aircraft design framework provides a simple method to design solar aircraft for users of all levels of experience.

Design/methodology/approach

This design framework consists of algorithms and user interfaces for the design of experiments, optimization and mission analysis that includes aerodynamics, performance, solar energy, weight and flight distances.

Findings

The proposed sizing method produces the optimal solar aircraft that yields the minimum weight and satisfies the constraints such as the power balance, the night time energy balance and the lift coefficient limit.

Research limitations/implications

The design conditions for the sizing process are given in terms of mission altitudes, flight dates, flight latitudes/longitudes and design factors for the aircraft configuration.

Practical implications

The framework environment is light and easily accessible as it is implemented using open programs without the use of any expensive commercial tools or in-house programs. In addition, this study presents a sizing method for solar aircraft as traditional sizing methods fail to reflect their unique features.

Social implications

Solar aircraft can be used in place of a satellite and introduce many advantages. The solar aircraft is much cheaper than the conventional satellite, which costs approximately $200-300m. It operates at a closer altitude to the ground and allows for a better visual inspection. It also provides greater flexibility of missions and covers a wider range of applications.

Originality/value

This study presents the implementation of a function that yields optimized flight performance under the given mission conditions, such as climb, cruise and descent for a solar aircraft.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 19 April 2022

Liwei Ju, Zhe Yin, Qingqing Zhou, Li Liu, Yushu Pan and Zhongfu Tan

This study aims to form a new concept of power-to-gas-based virtual power plant (GVPP) and propose a low-carbon economic scheduling optimization model for GVPP considering carbon…

Abstract

Purpose

This study aims to form a new concept of power-to-gas-based virtual power plant (GVPP) and propose a low-carbon economic scheduling optimization model for GVPP considering carbon emission trading.

Design/methodology/approach

In view of the strong uncertainty of wind power and photovoltaic power generation in GVPP, the information gap decision theory (IGDT) is used to measure the uncertainty tolerance threshold under different expected target deviations of the decision-makers. To verify the feasibility and effectiveness of the proposed model, nine-node energy hub was selected as the simulation system.

Findings

GVPP can coordinate and optimize the output of electricity-to-gas and gas turbines according to the difference in gas and electricity prices in the electricity market and the natural gas market at different times. The IGDT method can be used to describe the impact of wind and solar uncertainty in GVPP. Carbon emission rights trading can increase the operating space of power to gas (P2G) and reduce the operating cost of GVPP.

Research limitations/implications

This study considers the electrical conversion and spatio-temporal calming characteristics of P2G, integrates it with VPP into GVPP and uses the IGDT method to describe the impact of wind and solar uncertainty and then proposes a GVPP near-zero carbon random scheduling optimization model based on IGDT.

Originality/value

This study designed a novel structure of the GVPP integrating P2G, gas storage device into the VPP and proposed a basic near-zero carbon scheduling optimization model for GVPP under the optimization goal of minimizing operating costs. At last, this study constructed a stochastic scheduling optimization model for GVPP.

Details

International Journal of Climate Change Strategies and Management, vol. 15 no. 2
Type: Research Article
ISSN: 1756-8692

Keywords

Open Access
Article
Publication date: 3 September 2021

Hung T. Nguyen, Olga Kosheleva and Vladik Kreinovich

In 1951, Kenneth Arrow proved that it is not possible to have a group decision-making procedure that satisfies reasonable requirements like fairness. From the theoretical…

Abstract

Purpose

In 1951, Kenneth Arrow proved that it is not possible to have a group decision-making procedure that satisfies reasonable requirements like fairness. From the theoretical viewpoint, this is a great result – well-deserving the Nobel Prize that was awarded to Professor Arrow. However, from the practical viewpoint, the question remains – so how should we make group decisions? A usual way to solve this problem is to provide some reasonable heuristic ideas, but the problem is that different seemingly reasonable idea often lead to different group decision – this is known, e.g. for different voting schemes.

Design/methodology/approach

In this paper we analyze this problem from the viewpoint of decision theory, the basic theory underlying all our activities – including economic ones.

Findings

We show how from the first-principles decision theory, we can extract explicit recommendations for group decision making.

Originality/value

Most of the resulting recommendations have been proposed earlier. The main novelty of this paper is that it provides a unified coherent narrative that leads from the fundamental first principles to practical recommendations.

Details

Asian Journal of Economics and Banking, vol. 5 no. 3
Type: Research Article
ISSN: 2615-9821

Keywords

Open Access
Article
Publication date: 14 March 2024

Zabih Ghelichi, Monica Gentili and Pitu Mirchandani

This paper aims to propose a simulation-based performance evaluation model for the drone-based delivery of aid items to disaster-affected areas. The objective of the model is to…

504

Abstract

Purpose

This paper aims to propose a simulation-based performance evaluation model for the drone-based delivery of aid items to disaster-affected areas. The objective of the model is to perform analytical studies, evaluate the performance of drone delivery systems for humanitarian logistics and can support the decision-making on the operational design of the system – on where to locate drone take-off points and on assignment and scheduling of delivery tasks to drones.

Design/methodology/approach

This simulation model captures the dynamics and variabilities of the drone-based delivery system, including demand rates, location of demand points, time-dependent parameters and possible failures of drones’ operations. An optimization model integrated with the simulation system can update the optimality of drones’ schedules and delivery assignments.

Findings

An extensive set of experiments was performed to evaluate alternative strategies to demonstrate the effectiveness for the proposed optimization/simulation system. In the first set of experiments, the authors use the simulation-based evaluation tool for a case study for Central Florida. The goal of this set of experiments is to show how the proposed system can be used for decision-making and decision-support. The second set of experiments presents a series of numerical studies for a set of randomly generated instances.

Originality/value

The goal is to develop a simulation system that can allow one to evaluate performance of drone-based delivery systems, accounting for the uncertainties through simulations of real-life drone delivery flights. The proposed simulation model captures the variations in different system parameters, including interval of updating the system after receiving new information, demand parameters: the demand rate and their spatial distribution (i.e. their locations), service time parameters: travel times, setup and loading times, payload drop-off times and repair times and drone energy level: battery’s energy is impacted and requires battery change/recharging while flying.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. 14 no. 3
Type: Research Article
ISSN: 2042-6747

Keywords

Open Access
Article
Publication date: 11 June 2024

Julian Rott, Markus Böhm and Helmut Krcmar

Process mining (PM) has emerged as a leading technology for gaining data-based insights into organizations’ business processes. As processes increasingly cross-organizational…

Abstract

Purpose

Process mining (PM) has emerged as a leading technology for gaining data-based insights into organizations’ business processes. As processes increasingly cross-organizational boundaries, firms need to conduct PM jointly with multiple organizations to optimize their operations. However, current knowledge on cross-organizational process mining (coPM) is widely dispersed. Therefore, we synthesize current knowledge on coPM, identify challenges and enablers of coPM, and build a socio-technical framework and agenda for future research.

Design/methodology/approach

We conducted a literature review of 66 articles and summarized the findings according to the framework for Information Technology (IT)-enabled inter-organizational coordination (IOC) and the refined PM framework. The former states that within inter-organizational relationships, uncertainty sources determine information processing needs and coordination mechanisms determine information processing capabilities, while the fit between needs and capabilities determines the relationships’ performance. The latter distinguishes three categories of PM activities: cartography, auditing and navigation.

Findings

Past literature focused on coPM techniques, for example, algorithms for ensuring privacy and PM for cartography. Future research should focus on socio-technical aspects and follow four steps: First, determine uncertainty sources within coPM. Second, design, develop and evaluate coordination mechanisms. Third, investigate how the mechanisms assist with handling uncertainty. Fourth, analyze the impact on coPM performance. In addition, we present 18 challenges (e.g. integrating distributed data) and 9 enablers (e.g. aligning different strategies) for coPM application.

Originality/value

This is the first article to systematically investigate the status quo of coPM research and lay out a socio-technical research agenda building upon the well-established framework for IT-enabled IOC.

Details

Business Process Management Journal, vol. 30 no. 8
Type: Research Article
ISSN: 1463-7154

Keywords

Open Access
Article
Publication date: 25 October 2021

Yun Bai, Saeed Babanajad and Zheyong Bian

Transportation infrastructure asset management has long been an active but challenging problem for agencies, which urges to maintain a good state of their assets but faces…

1084

Abstract

Purpose

Transportation infrastructure asset management has long been an active but challenging problem for agencies, which urges to maintain a good state of their assets but faces budgetary limitations. Managing a network of transportation infrastructure assets, especially when the number is large, is a multifaceted challenge. This paper aims to develop a life-cycle cost analysis (LCCA) based transportation infrastructure asset management analytical framework to study the impacts of a few key parameters/factors on deterioration and life-cycle cost. Using the bridge as an example infrastructure type, the framework incorporates an optimization model for optimizing maintenance, repair, rehabilitation (MR&R) and replacement decisions in a finite planning horizon.

Design/methodology/approach

The analytical framework is further developed through a series of model variations, scenario and sensitivity analysis, simulation processes and numerical experiments to show the impacts of various parameters/factors and draw managerial insights. One notable analysis is to explicitly model the epistemic uncertainties of infrastructure deterioration models, which have been overlooked in previous research. The proposed methodology can be adapted to different types of assets for solving general asset management and capital planning problems.

Findings

The experiments and case studies revealed several findings. First, the authors showed the importance of the deterioration model parameter (i.e. Markov transition probability). Inaccurate information of p will lead to suboptimal solutions and results in excessive total cost. Second, both agency cost and user cost of a single facility will have significant impacts on the system cost and correlation between them also influences the system cost. Third, the optimal budget can be found and the system cost is tolerant to budge variations within a certain range. Four, the model minimizes the total cost by optimizing the allocation of funds to bridges weighing the trade-off between user and agency costs.

Originality/value

On the path forward to develop the next generation of bridge management systems methodologies, the authors make an exploration of incorporating the epistemic uncertainties of the stochastic deterioration models into bridge MR&R capital planning and decision-making. The authors propose an optimization approach that does not only incorporate the inherent stochasticity of bridge deterioration but also considers the epistemic uncertainties and variances of the model parameters of Markovian transition probabilities due to data errors or modeling processes.

Open Access
Article
Publication date: 30 August 2021

Kailun Feng, Shiwei Chen, Weizhuo Lu, Shuo Wang, Bin Yang, Chengshuang Sun and Yaowu Wang

Simulation-based optimisation (SO) is a popular optimisation approach for building and civil engineering construction planning. However, in the framework of SO, the simulation is…

1602

Abstract

Purpose

Simulation-based optimisation (SO) is a popular optimisation approach for building and civil engineering construction planning. However, in the framework of SO, the simulation is continuously invoked during the optimisation trajectory, which increases the computational loads to levels unrealistic for timely construction decisions. Modification on the optimisation settings such as reducing searching ability is a popular method to address this challenge, but the quality measurement of the obtained optimal decisions, also termed as optimisation quality, is also reduced by this setting. Therefore, this study aims to develop an optimisation approach for construction planning that reduces the high computational loads of SO and provides reliable optimisation quality simultaneously.

Design/methodology/approach

This study proposes the optimisation approach by modifying the SO framework through establishing an embedded connection between simulation and optimisation technologies. This approach reduces the computational loads and ensures the optimisation quality associated with the conventional SO approach by accurately learning the knowledge from construction simulations using embedded ensemble learning algorithms, which automatically provides efficient and reliable fitness evaluations for optimisation iterations.

Findings

A large-scale project application shows that the proposed approach was able to reduce computational loads of SO by approximately 90%. Meanwhile, the proposed approach outperformed SO in terms of optimisation quality when the optimisation has limited searching ability.

Originality/value

The core contribution of this research is to provide an innovative method that improves efficiency and ensures effectiveness, simultaneously, of the well-known SO approach in construction applications. The proposed method is an alternative approach to SO that can run on standard computing platforms and support nearly real-time construction on-site decision-making.

Details

Engineering, Construction and Architectural Management, vol. 30 no. 1
Type: Research Article
ISSN: 0969-9988

Keywords

Open Access
Article
Publication date: 29 January 2020

Allahyar (Arsalan) Ardakani and Jiangang Fei

The technique of cross-docking is attractive to organisations because of the lower warehousing and transportation (consolidated shipments) costs. This concept is based on the fast…

3690

Abstract

Purpose

The technique of cross-docking is attractive to organisations because of the lower warehousing and transportation (consolidated shipments) costs. This concept is based on the fast movement of products. Accordingly, cross-docking operations should be monitored carefully and accurately. Several factors in cross-docking operations can be impacted by uncertain sources that can lead to inaccuracy and inefficiency of this process. Although many papers have been published on different aspects of cross-docking, there is a need for a comprehensive review to investigate the sources of uncertainties in cross-docking. Therefore, the purpose of this paper is to analyse and categorise sources of uncertainty in cross-docking operations. A systematic review has been undertaken to analyse methods and techniques used in cross-docking research.

Design/methodology/approach

A systematic review has been undertaken to analyse methods and techniques used in cross-docking research.

Findings

The findings show that existing research has limitations on the applicability of the models developed to solve problems due to unrealistic or impractical assumption. Further research directions have been discussed to fill the gaps identified in the literature review.

Originality/value

There has been an increasing number of papers about cross-docking since 2010, among which three are literature reviews on cross-docking from 2013 to 2016. There is an absence of study in the current literature to critically review and identify the sources of uncertainty related to cross-docking operations. Without the proper identification and discussion of these uncertainties, the optimisation models developed to improve cross-docking operations may be inherently impractical and unrealistic.

Details

Modern Supply Chain Research and Applications, vol. 2 no. 1
Type: Research Article
ISSN: 2631-3871

Keywords

Open Access
Article
Publication date: 27 August 2024

d'Artis Kancs

In light of the recently experienced systemic shocks (the COVID-19 pandemic and the war in Ukraine), we investigate supply chain robustness. We aim to understand the potential…

Abstract

Purpose

In light of the recently experienced systemic shocks (the COVID-19 pandemic and the war in Ukraine), we investigate supply chain robustness. We aim to understand the potential consequences of uncertain events or adversary’s action on critical supplies in the Alliance.

Design/methodology/approach

We leverage a parsimonious supply chain model and investigate the relationship between upstream supplier concentration/diversification and the supply chain’s robustness (survival probability) in the presence of uncertain systemic shocks. In several scenarios of shock events, we simulate alternative input sourcing strategies in the presence of uncertainty.

Findings

A firm-level cost-focused optimisation may lead all upstream suppliers to concentrate in one location, which – when subsequently hit by a shock – would result in a disruption of the entire supply chain. A chain-level forward-looking optimisation diversifies the upstream supplier location and sourcing decisions. As a result, the supply chain’s survival probability is maximised, and critical supplies will continue even under the most demanding circumstances.

Research limitations/implications

Our findings encourage political and military decision makers to enhance upstream supply chain robustness in critical and strategic sectors, such as the diversification of nitrocellulose supplies currently sourced almost exclusively from China by European gunpowder manufacturers.

Practical implications

Our findings have direct recommendations to supply chain downstream decision makers and to the government’s policy choices. Since global supply chain (GSC) disruptions in critical sectors may have catastrophic impacts on social welfare and the probability of shocks such as COVID-19 and Russia’s war may not be known even approximately, robust decision rules seem to be the appropriate tools for policymaking in critical and strategic sectors such as energy supplies, food and water, communication and defence. A robust supply chain is one in which the survival probability is maximised, which we show in a central planner strategy’s simulations.

Originality/value

The paper shows formally why a market-based global input sourcing strategy may be efficient from an individual firm’s perspective but may be suboptimal from a societal resilience perspective.

Details

Journal of Defense Analytics and Logistics, vol. 8 no. 1
Type: Research Article
ISSN: 2399-6439

Keywords

Open Access
Article
Publication date: 21 August 2023

Yue Zhou, Xiaobei Shen and Yugang Yu

This study examines the relationship between demand forecasting error and retail inventory management in an uncertain supplier yield context. Replenishment is segmented into…

2602

Abstract

Purpose

This study examines the relationship between demand forecasting error and retail inventory management in an uncertain supplier yield context. Replenishment is segmented into off-season and peak-season, with the former characterized by longer lead times and higher supply uncertainty. In contrast, the latter incurs higher acquisition costs but ensures certain supply, with the retailer's purchase volume aligning with the acquired volume. Retailers can replenish in both phases, receiving goods before the sales season. This paper focuses on the impact of the retailer's demand forecasting bias on their sales period profits for both phases.

Design/methodology/approach

This study adopts a data-driven research approach by drawing inspiration from real data provided by a cooperating enterprise to address research problems. Mathematical modeling is employed to solve the problems, and the resulting optimal strategies are tested and validated in real-world scenarios. Furthermore, the applicability of the optimal strategies is enhanced by incorporating numerical simulations under other general distributions.

Findings

The study's findings reveal that a greater disparity between predicted and actual demand distributions can significantly reduce the profits that a retailer-supplier system can earn, with the optimal purchase volume also being affected. Moreover, the paper shows that the mean of the forecasting error has a more substantial impact on system revenue than the variance of the forecasting error. Specifically, the larger the absolute difference between the predicted and actual means, the lower the system revenue. As a result, managers should focus on improving the quality of demand forecasting, especially the accuracy of mean forecasting, when making replenishment decisions.

Practical implications

This study established a two-stage inventory optimization model that simultaneously considers random yield and demand forecast quality, and provides explicit expressions for optimal strategies under two specific demand distributions. Furthermore, the authors focused on how forecast error affects the optimal inventory strategy and obtained interesting properties of the optimal solution. In particular, the property that the optimal procurement quantity no longer changes with increasing forecast error under certain conditions is noteworthy, and has not been previously noted by scholars. Therefore, the study fills a gap in the literature.

Originality/value

This study established a two-stage inventory optimization model that simultaneously considers random yield and demand forecast quality, and provides explicit expressions for optimal strategies under two specific demand distributions. Furthermore, the authors focused on how forecast error affects the optimal inventory strategy and obtained interesting properties of the optimal solution. In particular, the property that the optimal procurement quantity no longer changes with increasing forecast error under certain conditions is noteworthy, and has not been previously noted by scholars. Therefore, the study fills a gap in the literature.

Details

Modern Supply Chain Research and Applications, vol. 5 no. 2
Type: Research Article
ISSN: 2631-3871

Keywords

1 – 10 of over 1000