Search results

1 – 10 of over 40000
Book part
Publication date: 1 November 2007

Irina Farquhar and Alan Sorkin

This study proposes targeted modernization of the Department of Defense (DoD's) Joint Forces Ammunition Logistics information system by implementing the optimized innovative…

Abstract

This study proposes targeted modernization of the Department of Defense (DoD's) Joint Forces Ammunition Logistics information system by implementing the optimized innovative information technology open architecture design and integrating Radio Frequency Identification Device data technologies and real-time optimization and control mechanisms as the critical technology components of the solution. The innovative information technology, which pursues the focused logistics, will be deployed in 36 months at the estimated cost of $568 million in constant dollars. We estimate that the Systems, Applications, Products (SAP)-based enterprise integration solution that the Army currently pursues will cost another $1.5 billion through the year 2014; however, it is unlikely to deliver the intended technical capabilities.

Details

The Value of Innovation: Impact on Health, Life Quality, Safety, and Regulatory Research
Type: Book
ISBN: 978-1-84950-551-2

Article
Publication date: 6 January 2023

Cuiwei Mao, Xiaoyi Gou and Bo Zeng

This paper aims to overcome the problem that the single structure of the driving term of the grey prediction model is not adapted to the complexity and diversity of the actual…

169

Abstract

Purpose

This paper aims to overcome the problem that the single structure of the driving term of the grey prediction model is not adapted to the complexity and diversity of the actual modeling objects, which leads to poor modeling results.

Design/methodology/approach

Firstly, the nonlinear law between the raw data and time point is fully mined by expanding the nonlinear term and the range of order. Secondly, through the synchronous optimization of model structure and parameter, the dynamic adjustment of the model with the change of the modeled object is realized. Finally, the objective optimization of nonlinear driving term and cumulative order of the model is realized by particle swarm optimization PSO algorithm.

Findings

The model can achieve strong compatibility with multiple existing models through parameter transformation. The synchronous optimization of model structure and parameter has a significant improvement over the single optimization method. The new model has a wide range of applications and strong modeling capabilities.

Originality/value

A novel grey prediction model with structure variability and optimizing parameter synchronization is proposed.

Highlights

The highlights of the paper are as follows:

  1. A new grey prediction model with a unified nonlinear structure is proposed.

  2. The new model can be fully compatible with multiple traditional grey models.

  3. The new model solves the defect of poor adaptability of the traditional grey models.

  4. The parameters of the new model are optimized by PSO algorithm.

  5. Cases verify that the new model outperforms other models significantly.

A new grey prediction model with a unified nonlinear structure is proposed.

The new model can be fully compatible with multiple traditional grey models.

The new model solves the defect of poor adaptability of the traditional grey models.

The parameters of the new model are optimized by PSO algorithm.

Cases verify that the new model outperforms other models significantly.

Article
Publication date: 26 September 2024

Gokhan Kazar

The cash flow from government agencies to contractors, called progress payment, is a critical step in public projects. The delays in progress payments significantly affect the…

Abstract

Purpose

The cash flow from government agencies to contractors, called progress payment, is a critical step in public projects. The delays in progress payments significantly affect the project performance of contractors and lead to conflicts between two parties in the Turkish construction industry. Although some previous studies focused on the issues in internal cash flows (e.g. inflows and outflows) of construction companies, the context of cash flows from public agencies to contractors in public projects is still unclear. Therefore, the primary objective of this study is to develop and test diverse machine learning-based predictive models on the progress payment performance of Turkish public agencies and improve the predictive performance of these models with two different optimization algorithms (e.g. first-order and second-order). In addition, this study explored the attributes that make the most significant contribution to predicting the payment performance of Turkish public agencies.

Design/methodology/approach

In total, project information of 2,319 building projects tendered by the Turkish public agencies was collected. Six different machine learning algorithms were developed and two different optimization methods were applied to achieve the best machine learning (ML) model for Turkish public agencies' cash flow performance in this study. The current research tested the effectiveness of each optimization algorithm for each ML model developed. In addition, the effect size achieved in the ML models was evaluated and ranked for each attribute, so that it is possible to observe which attributes make significant contributions to predicting the cash flow performance of Turkish public agencies.

Findings

The results show that the attributes “inflation rate” (F5; 11.2%), “consumer price index” (F6; 10.55%) and “total project duration” (T1; 10.9%) are the most significant factors affecting the progress payment performance of government agencies. While decision tree (DT) shows the best performance among ML models before optimization process, the prediction performance of models support vector machine (SVM) and genetic algorithm (GA) has been significantly improved by Broyden–Fletcher–Goldfarb–Shanno (BFGS)-based Quasi-Newton optimization algorithm by 14.3% and 18.65%, respectively, based on accuracy, AUROC (Area Under the Receiver Operating Characteristics) and F1 values.

Practical implications

The most effective ML model can be used and integrated into proactive systems in real Turkish public construction projects, which provides management of cash flow issues from public agencies to contractors and reduces conflicts between two parties.

Originality/value

The development and comparison of various predictive ML models on the progress payment performance of Turkish public owners in construction projects will be the first empirical attempt in the body of knowledge. This study has been carried out by using a high number of project information with diverse 27 attributes, which distinguishes this study in the body of knowledge. For the optimization process, a new hyper parameter tuning strategy, the Bayesian technique, was adopted for two different optimization methods. Thus, it is available to find the best predictive model to be integrated into real proactive systems in forecasting the cash flow performance of Turkish public agencies in public works projects. This study will also make novel contributions to the body of knowledge in understanding the key parameters that have a negative impact on the payment progress of public agencies.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 19 August 2024

Ibrahim T. Teke and Ahmet H. Ertas

The paper's goal is to examine and illustrate the useful uses of submodeling in finite element modeling for topology optimization and stress analysis. The goal of the study is to…

Abstract

Purpose

The paper's goal is to examine and illustrate the useful uses of submodeling in finite element modeling for topology optimization and stress analysis. The goal of the study is to demonstrate how submodeling – more especially, a 1D approach – can reliably and effectively produce ideal solutions for challenging structural issues. The paper aims to demonstrate the usefulness of submodeling in obtaining converged solutions for stress analysis and optimized geometry for improved fatigue life by studying a cantilever beam case and using beam formulations. In order to guarantee the precision and dependability of the optimization process, the developed approach will also be validated through experimental testing, such as 3-point bending tests and 3D printing. Using 3D finite element models, the 1D submodeling approach is further validated in the final step, showing a strong correlation with experimental data for deflection calculations.

Design/methodology/approach

The authors conducted a literature review to understand the existing research on submodeling and its practical applications in finite element modeling. They selected a cantilever beam case as a test subject to demonstrate stress analysis and topology optimization through submodeling. They developed a 1D submodeling approach to streamline the optimization process and ensure result validity. The authors utilized beam formulations to optimize and validate the outcomes of the submodeling approach. They 3D-printed the optimized models and subjected them to a 3-point bending test to confirm the accuracy of the developed approach. They employed 3D finite element models for submodeling to validate the 1D approach, focusing on specific finite elements for deflection calculations and analyzed the results to demonstrate a strong correlation between the theoretical models and experimental data, showcasing the effectiveness of the submodeling methodology in achieving optimal solutions efficiently and accurately.

Findings

The findings of the paper are as follows: 1. The use of submodeling, specifically a 1D submodeling approach, proved to be effective in achieving optimal solutions more efficiently and accurately in finite element modeling. 2. The study conducted on a cantilever beam case demonstrated successful stress analysis and topology optimization through submodeling, resulting in optimized geometry for enhanced fatigue life. 3. Beam formulations were utilized to optimize and validate the outcomes of the submodeling approach, leading to the successful 3D printing and testing of the optimized models through a 3-point bending test. 4. Experimental results confirmed the accuracy and validity of the developed submodeling approach in streamlining the optimization process. 5. The use of 3D finite element models for submodeling further validated the 1D approach, with specific finite elements showing a strong correlation with experimental data in deflection calculations. Overall, the findings highlight the effectiveness of submodeling techniques in achieving optimal solutions and validating results in finite element modeling, stress analysis and optimization processes.

Originality/value

The originality and value of the paper lie in its innovative approach to utilizing submodeling techniques in finite element modeling for structural analysis and optimization. By focusing on the reduction of finite element models and the creation of smaller, more manageable models through submodeling, the paper offers designers a more efficient and accurate way to achieve optimal solutions for complex problems. The study's use of a cantilever beam case to demonstrate stress analysis and topology optimization showcases the practical applications of submodeling in real-world scenarios. The development of a 1D submodeling approach, along with the utilization of beam formulations and 3D printing for experimental validation, adds a novel dimension to the research. Furthermore, the paper's integration of 1D and 3D submodeling techniques for deflection calculations and validation highlights the thoroughness and rigor of the study. The strong correlation between the finite element models and experimental data underscores the reliability and accuracy of the developed approach. Overall, the originality and value of this paper lie in its comprehensive exploration of submodeling techniques, its practical applications in structural analysis and optimization and its successful validation through experimental testing.

Book part
Publication date: 6 November 2013

Bartosz Sawik

This chapter presents the survey of selected linear and mixed integer programming multi-objective portfolio optimization. The definitions of selected percentile risk measures are…

Abstract

This chapter presents the survey of selected linear and mixed integer programming multi-objective portfolio optimization. The definitions of selected percentile risk measures are presented. Some contrasts and similarities of the different types of portfolio formulations are drawn out. The survey of multi-criteria methods devoted to portfolio optimization such as weighting approach, lexicographic approach, and reference point method is also presented. This survey presents the nature of the multi-objective portfolio problems focuses on a compromise between the construction of objectives, constraints, and decision variables in a portfolio and the problem complexity of the implemented mathematical models. There is always a trade-off between computational time and the size of an input data, as well as the type of mathematical programming formulation with linear and/or mixed integer variables.

Open Access
Article
Publication date: 30 August 2021

Kailun Feng, Shiwei Chen, Weizhuo Lu, Shuo Wang, Bin Yang, Chengshuang Sun and Yaowu Wang

Simulation-based optimisation (SO) is a popular optimisation approach for building and civil engineering construction planning. However, in the framework of SO, the simulation is…

1607

Abstract

Purpose

Simulation-based optimisation (SO) is a popular optimisation approach for building and civil engineering construction planning. However, in the framework of SO, the simulation is continuously invoked during the optimisation trajectory, which increases the computational loads to levels unrealistic for timely construction decisions. Modification on the optimisation settings such as reducing searching ability is a popular method to address this challenge, but the quality measurement of the obtained optimal decisions, also termed as optimisation quality, is also reduced by this setting. Therefore, this study aims to develop an optimisation approach for construction planning that reduces the high computational loads of SO and provides reliable optimisation quality simultaneously.

Design/methodology/approach

This study proposes the optimisation approach by modifying the SO framework through establishing an embedded connection between simulation and optimisation technologies. This approach reduces the computational loads and ensures the optimisation quality associated with the conventional SO approach by accurately learning the knowledge from construction simulations using embedded ensemble learning algorithms, which automatically provides efficient and reliable fitness evaluations for optimisation iterations.

Findings

A large-scale project application shows that the proposed approach was able to reduce computational loads of SO by approximately 90%. Meanwhile, the proposed approach outperformed SO in terms of optimisation quality when the optimisation has limited searching ability.

Originality/value

The core contribution of this research is to provide an innovative method that improves efficiency and ensures effectiveness, simultaneously, of the well-known SO approach in construction applications. The proposed method is an alternative approach to SO that can run on standard computing platforms and support nearly real-time construction on-site decision-making.

Details

Engineering, Construction and Architectural Management, vol. 30 no. 1
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 29 April 2014

Jinlin Gong, Bassel Aslan, Frédéric Gillon and Eric Semail

The purpose of this paper is to apply some surrogate-assisted optimization techniques in order to improve the performances of a five-phase permanent magnet machine in the context…

Abstract

Purpose

The purpose of this paper is to apply some surrogate-assisted optimization techniques in order to improve the performances of a five-phase permanent magnet machine in the context of a complex model requiring computation time.

Design/methodology/approach

An optimal control of four independent currents is proposed in order to minimize the total losses with the respect of functioning constraints. Moreover, some geometrical parameters are added to the optimization process allowing a co-design between control and dimensioning.

Findings

The optimization results prove the remarkable effect of using the freedom degree offered by a five-phase structure on iron and magnets losses. The performances of the five-phase machine with concentrated windings are notably improved at high speed (16,000 rpm).

Originality/value

The effectiveness of the method allows solving the challenge which consists in taking into account inside the control strategy the eddy-current losses in magnets and iron. In fact, magnet losses are a critical point to protect the machine from demagnetization in flux-weakening region.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 6 June 2016

Roozbeh Hesamamiri and Atieh Bourouni

Customer support has always been considered a competitive advantage in many industries. In recent years, firms have begun to provide customers with a high-quality service…

Abstract

Purpose

Customer support has always been considered a competitive advantage in many industries. In recent years, firms have begun to provide customers with a high-quality service experience, in order to attract more customers and achieve higher customer satisfaction. Although customer service and satisfaction have been discussed by other researchers, to the knowledge, there has been no dynamic and intelligent way to model and optimize customer support systems for product and service providers. The purpose of this paper is to develop a modeling method for customer support optimization.

Design/methodology/approach

In this study, a system dynamics (SD) model has been formulated to investigate the dynamic characteristics of customer support in an IT service provider. The proposed simulation model considers the dynamic, non-linear, and asymmetric interactions among its components, and allows study of the behavior of the customer support system under controlled conditions. Furthermore, a particle swarm optimization method was developed to investigate the proper combination of parameters and strategy development of the support center.

Findings

This paper proposes a novel modeling, simulation, and optimization approach for complex customer support systems of information and communications technology (ICT) service providers. This method helps managers improve their customer support systems. Moreover, the simulation results of the case study show that ICT service providers can gain benefit by managing their customer service dynamically over time using the proposed artificial intelligent multi-parameter modeling and optimization method.

Research limitations/implications

The proposed holistic modeling approach and multi-parameter optimization method will greatly help managers and researchers understand the factors influencing customer support. Moreover, it facilitates the process of making new improvement strategies based on provided insights.

Originality/value

The paper shows how SD simulation and multi-parameter optimization can provide insights into the field of customer support. However, the existing literature lacks a holistic view of these kinds of simulation systems, as well as a multi-parameter optimization method for SD methodology.

Article
Publication date: 9 April 2018

Zefeng Xiao, Yongqiang Yang, Di Wang, Changhui Song and Yuchao Bai

This paper aims to summarize design rules based on the process characteristics of selective laser melting (SLM) and structural optimization and apply the design rules in the…

Abstract

Purpose

This paper aims to summarize design rules based on the process characteristics of selective laser melting (SLM) and structural optimization and apply the design rules in the lightweight design of an aluminum alloy antenna bracket. The design goal is to reduce 30 per cent of the weight while maintaining the stress levels in the original part.

Design/methodology/approach

To reduce weight as much as possible, the titanium alloy with higher specific strength was selected during the process of optimization. The material distribution of the bracket was improved by the topology optimization design. The redesign for SLM was used to obtain an optimization model, which was more suitable for SLM. The component performance was improved by shape optimization. The modal analysis data of the structural optimization model were compared with those of the stochastic lightweight model to verify the structural optimization model. The scanning data were compared with those of the original model to verify whether the model was suitable for SLM.

Findings

Structural optimization design for antenna bracket realized the mass decrease of 30.43 per cent and the fundamental frequency increase of 50.18 per cent. The modal analysis data of the stochastic lightweight model and the structural optimization model indicated that the optimization performance of structural optimization method was better than that of the stochastic lightweight method. The comparison results between the scanning data of the forming part and the original data confirmed that the structural optimization design for SLM lightweight component could achieve the desired forming accuracy.

Originality/value

This paper summarizes geometric constraints in SLM and derives design rules of structural optimization based on the process characteristics of SLM. SLM design rules make structural optimization design more reasonable. The combination of structural optimization design and SLM can improve the performance of lightweight antenna bracket significantly.

Details

Rapid Prototyping Journal, vol. 24 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 29 March 2011

Anil Sharma, G.S. Yadava and S.G. Deshmukh

The purpose of this paper is to review the literature on maintenance optimization models and associated case studies. For these optimization models critical observations are made.

7047

Abstract

Purpose

The purpose of this paper is to review the literature on maintenance optimization models and associated case studies. For these optimization models critical observations are made.

Design/methodology/approach

The paper systematically classifies the published literature using different techniques, and also identifies the possible gaps.

Findings

The paper outlines important techniques used in various maintenance optimization models including the analytical hierarchy process, the Bayesian approach, the Galbraith information processing model and genetic algorithms. There is an emerging trend towards uses of simulation for maintenance optimization which has changed the maintenance view.

Practical implications

A limited literature is available on the classification of maintenance optimization models and on its associated case studies. The paper classifies the literature on maintenance optimization models on different optimization techniques and based on emerging trends it outlines the directions for future research in the area of maintenance optimization.

Originality/value

The paper provides many references and case studies on maintenance optimization models and techniques. It gives useful references for maintenance management professionals and researchers working on maintenance optimization.

Details

Journal of Quality in Maintenance Engineering, vol. 17 no. 1
Type: Research Article
ISSN: 1355-2511

Keywords

1 – 10 of over 40000