Search results

1 – 10 of over 1000
Article
Publication date: 28 June 2024

Pradipta Patra and Unni Krishnan Dinesh Kumar

Opportunistic and delayed maintenances are increasingly becoming important strategies for sustainable maintenance practices since they increase the lifetime of complex systems…

Abstract

Purpose

Opportunistic and delayed maintenances are increasingly becoming important strategies for sustainable maintenance practices since they increase the lifetime of complex systems like aircrafts and heavy equipment. The objective of the current study is to quantify the optimal time window for adopting these strategies.

Design/methodology/approach

The current study considers the trade-offs between different costs involved in the opportunistic and delayed maintenances (of equipment) like the fixed cost of scheduled maintenances, the opportunistic rewards that may be earned and the cost of premature parts replacement. The probability of the opportunistic maintenance has been quantified under two different scenarios – Mission Reliability and Renewal Process. In the case of delayed maintenance, the cost of the delayed maintenance is also considered. The study uses optimization techniques to find the optimal maintenance time windows and also derive useful insights.

Findings

Apart from finding the optimal time window for the maintenance activities the study also shows that opportunistic maintenance is beneficial provided the opportunistic reward is significantly large; the cost of conducting scheduled maintenance in the pre-determined slot is significantly large. Similarly, the opportunistic maintenance may not be beneficial if the pre-mature equipment parts replacement cost is significantly high. The optimal opportunistic maintenance time is increasing function of Weibull failure rate parameter “beta” and decreasing function of Weibull failure rate parameter “theta.” In the case of optimal delayed maintenance time, these relationships reverse.

Originality/value

To the best of our knowledge, very few studies exist that have used mission reliability to study opportunistic maintenance or considered the different cost trade-offs comprehensively.

Details

International Journal of Quality & Reliability Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 27 November 2023

Velmurugan Kumaresan, S. Saravanasankar and Gianpaolo Di Bona

Through the use of the Markov Decision Model (MDM) approach, this study uncovers significant variations in the availability of machines in both faulty and ideal situations in…

Abstract

Purpose

Through the use of the Markov Decision Model (MDM) approach, this study uncovers significant variations in the availability of machines in both faulty and ideal situations in small and medium-sized enterprises (SMEs). The first-order differential equations are used to construct the mathematical equations from the transition-state diagrams of the separate subsystems in the critical part manufacturing plant.

Design/methodology/approach

To obtain the lowest investment cost, one of the non-traditional optimization strategies is employed in maintenance operations in SMEs in this research. It will use the particle swarm optimization (PSO) algorithm to optimize machine maintenance parameters and find the best solutions, thereby introducing the best decision-making process for optimal maintenance and service operations.

Findings

The major goal of this study is to identify critical subsystems in manufacturing plants and to use an optimal decision-making process to adopt the best maintenance management system in the industry. The optimal findings of this proposed method demonstrate that in problematic conditions, the availability of SME machines can be enhanced by up to 73.25%, while in an ideal situation, the system's availability can be increased by up to 76.17%.

Originality/value

The proposed new optimal decision-support system for this preventive maintenance management in SMEs is based on these findings, and it aims to achieve maximum productivity with the least amount of expenditure in maintenance and service through an optimal planning and scheduling process.

Details

Journal of Quality in Maintenance Engineering, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 7 August 2024

Yazid Aafif, Jérémie Schutz, Sofiene Dellagi, Anis Chelbi and Lahcen Mifdal

The purpose of this paper is to optimize the maintenance strategies for wind turbine (WT) gearboxes to minimize costs associated with PM actions, cooling, production loss and…

Abstract

Purpose

The purpose of this paper is to optimize the maintenance strategies for wind turbine (WT) gearboxes to minimize costs associated with PM actions, cooling, production loss and gearbox replacement. Two approaches, periodic imperfect maintenance and a novel design incorporating alternating gearboxes are compared to identify the most cost-effective solution.

Design/methodology/approach

This study employs mathematical modeling to analyze the design, operation and maintenance of WT gearboxes. Two maintenance strategies are investigated, involving periodic imperfect maintenance actions and the incorporation of two similar gearboxes operating alternately. The models determine optimal preventive maintenance (PM) and switching periods to minimize total expected costs over the operating time span.

Findings

The research findings reveal, for the considered case of a moroccan wind farm, that the use of two similar gearboxes operating alternately is more cost-effective than relying on a single gearbox. The mathematical models developed enable the determination and comparison of optimal strategies for various WT gearbox scenarios and associated maintenance costs.

Research limitations/implications

Limitations may arise from simplifications in the mathematical models and assumptions about degradation, temperature monitoring and maintenance effectiveness. Future research could refine the models and incorporate additional factors for a more comprehensive analysis.

Practical implications

Practically, the study provides insights into optimizing WT gearbox maintenance strategies, considering the trade-offs between PM actions, cooling, production loss and gearbox replacement costs. The findings can inform decisions on maintenance planning and design modifications to enhance cost efficiency.

Social implications

While the primary focus is on cost optimization, the study indirectly contributes to the broader societal goal of sustainable energy production. Efficient maintenance strategies for WTs help ensure reliable and cost-effective renewable energy, potentially benefiting communities relying on wind power.

Originality/value

This paper introduces two distinct strategies for WT gearbox maintenance, extending beyond traditional periodic maintenance. The incorporation of alternating gearboxes presents a novel design approach. The developed mathematical models offer a valuable tool for determining and comparing optimal strategies tailored to specific WT scenarios and associated maintenance costs.

Details

Journal of Quality in Maintenance Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 15 September 2023

Suzan Alaswad and Sinan Salman

While steady-state analysis is useful, it does not consider the inherent transient characteristics of repairable systems' behavior, especially in systems that have relatively…

Abstract

Purpose

While steady-state analysis is useful, it does not consider the inherent transient characteristics of repairable systems' behavior, especially in systems that have relatively short life spans, or when their transient behavior is of special concern such as the motivating example used in this paper, military systems. Therefore, a maintenance policy that considers both transient and steady-state availability and aims to achieve the best trade-off between high steady-state availability and rapid stabilization is essential.

Design/methodology/approach

This paper studies the transient behavior of system availability under the Kijima Type II virtual age model. While such systems achieve steady-state availability, and it has been proved that deploying preventive maintenance (PM) can significantly improve its steady-state availability, this improvement often comes at the price of longer and increased fluctuating transient behavior, which affects overall system performance. The authors present a methodology that identifies the optimal PM policy that achieves the best trade-off between high steady-state availability and rapid stabilization based on cost-availability analysis.

Findings

When the proposed simulation-based optimization and cost analysis methodology is applied to the motivating example, it produces an optimal PM policy that achieves an availability–variability balance between transient and steady-state system behaviors. The optimal PM policy produces a notably lower availability coefficient of variation (by 11.5%), while at the same time suffering a negligible limiting availability loss of only 0.3%. The new optimal PM policy also provides cost savings of about 5% in total maintenance cost. The performed sensitivity analysis shows that the system's optimal maintenance cost is sensitive to the repair time, the shape parameter of the Weibull distribution and the downtime cost, but is robust with respect to changes in the remaining parameters.

Originality/value

Most of the current maintenance models emphasize the steady-state behavior of availability and neglect its transient behavior. For some systems, using steady-state availability as the sole metric for performance is not adequate, especially in systems that have relatively short life spans or when their transient behavior affects the overall performance. However, little work has been done on the transient analysis of such systems. In this paper, the authors aim to fill this gap by emphasizing such systems and applications where transient behavior is of critical importance to efficiently optimize system performance. The authors use military systems as a motivating example.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 2
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 23 May 2023

Arnt O. Hopland and Sturla Kvamsdal

There is widespread and long-lasting worry related to the condition of public purpose buildings and public investments. Public buildings make up a huge capital stock and proper…

Abstract

Purpose

There is widespread and long-lasting worry related to the condition of public purpose buildings and public investments. Public buildings make up a huge capital stock and proper maintenance and investments are important for public policy. Notwithstanding, the relevant research literature is fragmented and spread across several fields. The authors take stock of earlier and more recent research and suggest some ideas for future research.

Design/methodology/approach

The authors summarize the relevant literature and discuss implications of various theoretical assumptions and empirical findings for maintenance and investment strategies.

Findings

A better understanding of the role of public facilities in public service provision is important. Relevant topics for further research are the impact of technological changes, both in buildings and service provision, economic issues including macroeconomic shocks and trends that influence public funding and demand for public services, and advancing maintenance scheduling models to consider a portfolio of facilities. Further, the empirical literature suffers from a lack of relevant data to gauge both the condition of public facilities and their impact on public services.

Originality/value

There is widespread worry that poor facilities adversely impact public services, but the size and significance of this impact are an open question. This paper contributes by taking stock of the existing research on public facilities, maintenance, and investments, and suggest ideas for further work.

Details

Property Management, vol. 41 no. 5
Type: Research Article
ISSN: 0263-7472

Keywords

Article
Publication date: 4 December 2023

Ahmed M. Attia, Ahmad O. Alatwi, Ahmad Al Hanbali and Omar G. Alsawafy

This research integrates maintenance planning and production scheduling from a green perspective to reduce the carbon footprint.

Abstract

Purpose

This research integrates maintenance planning and production scheduling from a green perspective to reduce the carbon footprint.

Design/methodology/approach

A mixed-integer nonlinear programming (MINLP) model is developed to study the relation between production makespan, energy consumption, maintenance actions and footprint, i.e. service level and sustainability measures. The speed scaling technique is used to control energy consumption, the capping policy is used to control CO2 footprint and preventive maintenance (PM) is used to keep the machine working in healthy conditions.

Findings

It was found that ignoring maintenance activities increases the schedule makespan by more than 21.80%, the total maintenance time required to keep the machine healthy by up to 75.33% and the CO2 footprint by 15%.

Research limitations/implications

The proposed optimization model can simultaneously be used for maintenance planning, job scheduling and footprint minimization. Furthermore, it can be extended to consider other maintenance activities and production configurations, e.g. flow shop or job shop scheduling.

Practical implications

Maintenance planning, production scheduling and greenhouse gas (GHG) emissions are intertwined in the industry. The proposed model enhances the performance of the maintenance and production systems. Furthermore, it shows the value of conducting maintenance activities on the machine's availability and CO2 footprint.

Originality/value

This work contributes to the literature by combining maintenance planning, single-machine scheduling and environmental aspects in an integrated MINLP model. In addition, the model considers several practical features, such as machine-aging rate, speed scaling technique to control emissions, minimal repair (MR) and PM.

Details

Journal of Quality in Maintenance Engineering, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 30 April 2024

Sophie van Roosmale, Amaryllis Audenaert and Jasmine Meysman

This paper aims to highlight the expanding link between facility management (FM) and building automation and control systems (BACS) through a review of literature. It examines the…

Abstract

Purpose

This paper aims to highlight the expanding link between facility management (FM) and building automation and control systems (BACS) through a review of literature. It examines the opportunities and challenges of BACS for facility managers and proposes solutions for mitigating the risks associated with BACS implementation.

Design/methodology/approach

This paper reviews various research papers to explore the positive influences of BACS on FM, such as support with strategic decision-making, predictive maintenance, energy efficiency and comfort improvement. It also discusses the challenges of BACS, including obsolescence, interoperability, vendor lock-in, reliability and security risks and suggests potential solutions based on existing literature.

Findings

BACS offers numerous opportunities for facility managers, such as improved decision-making, energy efficiency and comfort levels in office buildings. However, there are also risks associated with BACS implementation, including obsolescence, interoperability, vendor lock-in, reliability and security risks. These risks can be mitigated through measures such as hardware and software obsolescence management plans, functional requirement lists, wireless communication protocols, advanced feedback systems and increased awareness about BACS security.

Originality/value

To the best of the authors’ knowledge, no prior academic research has been conducted on the expanding link between FM and BACS. Although some papers have touched upon the opportunities and challenges of BACS for FM, this paper aims to provide a comprehensive overview of these findings by consolidating existing literature.

Details

Facilities , vol. 42 no. 7/8
Type: Research Article
ISSN: 0263-2772

Keywords

Open Access
Article
Publication date: 7 September 2023

Chioma Okoro

Technological change drives transformation in most sectors of the economy. Industry 4.0 technologies have been applied at different stages of a building’s lifecycle. However…

1003

Abstract

Purpose

Technological change drives transformation in most sectors of the economy. Industry 4.0 technologies have been applied at different stages of a building’s lifecycle. However, limited studies exist on their application in real estate facilities management (REFM). This study aims to assess the existing knowledge on the topic to suggest further research directions.

Design/methodology/approach

Scopus-indexed literature from 2013 to 2023 was examined and visualised using VOSviewer software to output quantitative (descriptive) results. Content analysis was used to complement the quantitative findings.

Findings

Findings indicated a concentration of research in China, Norway and Italy. The knowledge areas included three clusters: lifecycle integration and management, data curation and management and organisational and management capabilities. The benefits, challenges and support strategies were highlighted.

Research limitations/implications

More collaboration is needed across countries and territories on technology integration in REFM. Future research using alternative methodologies is recommended, with a focus on adopting and non-adopting REFM organisations. Further, implications for facility managers, employees, technology suppliers or vendors, training, organisations and management exist.

Practical implications

Further, implications for facility managers, employees, technology suppliers or vendors, training, organisations and management exist.

Originality/value

The study reveals the knowledge base on technology use in REFM. It adds to the evidence base on innovation and technology adoption in REFM.

Details

Facilities , vol. 41 no. 15/16
Type: Research Article
ISSN: 0263-2772

Keywords

Article
Publication date: 26 April 2024

Mawloud Titah and Mohammed Abdelghani Bouchaala

This paper aims to establish an efficient maintenance management system tailored for healthcare facilities, recognizing the crucial role of medical equipment in providing timely…

Abstract

Purpose

This paper aims to establish an efficient maintenance management system tailored for healthcare facilities, recognizing the crucial role of medical equipment in providing timely and precise patient care.

Design/methodology/approach

The system is designed to function both as an information portal and a decision-support system. A knowledge-based approach is adopted centered on Semantic Web Technologies (SWTs), leveraging a customized ontology model for healthcare facilities’ knowledge capitalization. Semantic Web Rule Language (SWRL) is integrated to address decision-support aspects, including equipment criticality assessment, maintenance strategies selection and contracting policies assignment. Additionally, Semantic Query-enhanced Web Rule Language (SQWRL) is incorporated to streamline the retrieval of decision-support outcomes and other useful information from the system’s knowledge base. A real-life case study conducted at the University Hospital Center of Oran (Algeria) illustrates the applicability and effectiveness of the proposed approach.

Findings

Case study results reveal that 40% of processed equipment is highly critical, 40% is of medium criticality, and 20% is of negligible criticality. The system demonstrates significant efficacy in determining optimal maintenance strategies and contracting policies for the equipment, leveraging combined knowledge and data-driven inference. Overall, SWTs showcases substantial potential in addressing maintenance management challenges within healthcare facilities.

Originality/value

An innovative model for healthcare equipment maintenance management is introduced, incorporating ontology, SWRL and SQWRL, and providing efficient data integration, coordinated workflows and data-driven context-aware decisions, while maintaining optimal flexibility and cross-departmental interoperability, which gives it substantial potential for further development.

Details

Journal of Quality in Maintenance Engineering, vol. 30 no. 2
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 13 February 2024

José Nogueira da Mata Filho, Antonio Celio Pereira de Mesquita, Fernando Teixeira Mendes Abrahão and Guilherme C. Rocha

This paper aims to explore the optimization process involved in the aircraft maintenance allocation and packing problem. The aircraft industry misses a part of the optimization…

Abstract

Purpose

This paper aims to explore the optimization process involved in the aircraft maintenance allocation and packing problem. The aircraft industry misses a part of the optimization potential while developing maintenance plans. This research provides the modeling foundation for the missing part considering the failure behavior of components, costs involved with all maintenance tasks and opportunity costs.

Design/methodology/approach

The study models the cost-effectiveness of support against the availability to come up with an optimization problem. The mathematical problem was solved with an exact algorithm. Experiments were performed with real field and synthetically generated data, to validate the correctness of the model and its potential to provide more accurate and better engineered maintenance plans.

Findings

The solution procedure provided excellent results by enhancing the overall arrangement of the tasks, resulting in higher availability rates and a substantial decrease in total maintenance costs. In terms of situational awareness, it provides the user with the flexibility to better manage resource constraints while still achieving optimal results.

Originality/value

This is an innovative research providing a state-of-the-art mathematical model and an algorithm for efficiently solving a task allocation and packing problem by incorporating components’ due flight time, failure probability, task relationships, smart allocation of common preparation tasks, operational profile and resource limitations.

Details

Journal of Quality in Maintenance Engineering, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2511

Keywords

1 – 10 of over 1000