Search results

1 – 10 of 30
Open Access
Article
Publication date: 13 February 2020

John A. Kearby, Ryan D. Winz, Thom J. Hodgson, Michael G. Kay, Russell E. King and Brandon M. McConnell

The purpose of this paper is to investigate US noncombatant evacuation operations (NEO) in South Korea and devise planning and management procedures that improve the efficiency of…

3177

Abstract

Purpose

The purpose of this paper is to investigate US noncombatant evacuation operations (NEO) in South Korea and devise planning and management procedures that improve the efficiency of those missions.

Design/methodology/approach

It formulates a time-staged network model of the South Korean noncombatant evacuation system as a mixed integer linear program to determine an optimal flow configuration that minimizes the time required to complete an evacuation. This solution considers the capacity and resource constraints of multiple transportation modes and effectively allocates the limited assets across a time-staged network to create a feasible evacuation plan. That solution is post-processed and a vehicle routing procedure then produces a high resolution schedule for each individual asset throughout the entire duration of the NEO.

Findings

This work makes a clear improvement in the decision-making and resource allocation methodology currently used in a NEO on the Korea peninsula. It immediately provides previously unidentifiable information regarding the scope and requirements of a particular evacuation scenario and then produces an executable schedule for assets to facilitate mission accomplishment.

Originality/value

The significance of this work is not relegated only to evacuation operations on the Korean peninsula; there are numerous other NEO and natural disaster related scenarios that can benefit from this approach.

Details

Journal of Defense Analytics and Logistics, vol. 4 no. 1
Type: Research Article
ISSN: 2399-6439

Keywords

Open Access
Article
Publication date: 26 December 2023

Mehmet Kursat Oksuz and Sule Itir Satoglu

Disaster management and humanitarian logistics (HT) play crucial roles in large-scale events such as earthquakes, floods, hurricanes and tsunamis. Well-organized disaster response…

Abstract

Purpose

Disaster management and humanitarian logistics (HT) play crucial roles in large-scale events such as earthquakes, floods, hurricanes and tsunamis. Well-organized disaster response is crucial for effectively managing medical centres, staff allocation and casualty distribution during emergencies. To address this issue, this study aims to introduce a multi-objective stochastic programming model to enhance disaster preparedness and response, focusing on the critical first 72 h after earthquakes. The purpose is to optimize the allocation of resources, temporary medical centres and medical staff to save lives effectively.

Design/methodology/approach

This study uses stochastic programming-based dynamic modelling and a discrete-time Markov Chain to address uncertainty. The model considers potential road and hospital damage and distance limits and introduces an a-reliability level for untreated casualties. It divides the initial 72 h into four periods to capture earthquake dynamics.

Findings

Using a real case study in Istanbul’s Kartal district, the model’s effectiveness is demonstrated for earthquake scenarios. Key insights include optimal medical centre locations, required capacities, necessary medical staff and casualty allocation strategies, all vital for efficient disaster response within the critical first 72 h.

Originality/value

This study innovates by integrating stochastic programming and dynamic modelling to tackle post-disaster medical response. The use of a Markov Chain for uncertain health conditions and focus on the immediate aftermath of earthquakes offer practical value. By optimizing resource allocation amid uncertainties, the study contributes significantly to disaster management and HT research.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2042-6747

Keywords

Open Access
Article
Publication date: 17 May 2023

Fuquan Zhou

This study aims to optimize the traffic capacity allocation to solve the problem of low share of public transit in the landside system so as to get rid of the congestion trouble…

Abstract

Purpose

This study aims to optimize the traffic capacity allocation to solve the problem of low share of public transit in the landside system so as to get rid of the congestion trouble in landside traffic. The optimal timetable for airport buses can be searched by changing the departure interval of each line and evaluating the corresponding performance continuously.

Design/methodology/approach

This paper constructs a simulation model based on the real-world situation in Beijing Capital International Airport (BCIA), which simulates the whole process of airport bus schedules and analyzes the connections among multiple steps for transferring. The evaluation system is constructed by considering the benefits of passengers, airports and companies comprehensively. The optimal timetable for airport buses can be searched by changing the departure interval of each line and evaluating the corresponding performance continuously.

Findings

According to the experimental results, an excellent evacuation effect can only be achieved when the majority of departure intervals of airport buses are shortened to 50% of their original values, and some busy routes such as the Beijing Station line are supposed to be reduced to one-third of their original fixed intervals. As the airport bus passenger flow presents an obviously periodic variation over days, the timetable of the airport bus is supposed to be redesigned every day. A flexible bus timetable can not only meet the dynamic passenger flow but also enhance the attractiveness of public transit.

Originality/value

This paper constructs a simulation model based on the real-world situation in BCIA, which can not only model the complex scenes in the whole process of airport bus schedules but also reflect the intricate interaction between transferring passengers and vehicles caused by dense streamlines.

Details

Smart and Resilient Transportation, vol. 5 no. 1
Type: Research Article
ISSN: 2632-0487

Keywords

Open Access
Article
Publication date: 25 March 2024

Hossein Shakibaei, Seyyed Amirmohammad Moosavi, Amir Aghsami and Masoud Rabbani

Throughout human history, the occurrence of disasters has been inevitable, leading to significant human, financial and emotional consequences. Therefore, it is crucial to…

Abstract

Purpose

Throughout human history, the occurrence of disasters has been inevitable, leading to significant human, financial and emotional consequences. Therefore, it is crucial to establish a well-designed plan to efficiently manage such situations when disaster strikes. The purpose of this study is to develop a comprehensive program that encompasses multiple aspects of postdisaster relief.

Design/methodology/approach

A multiobjective model has been developed for postdisaster relief, with the aim of minimizing social dissatisfaction, economic costs and environmental damage. The model has been solved using exact methods for different scenarios. The objective is to achieve the most optimal outcomes in the context of postdisaster relief operations.

Findings

A real case study of an earthquake in Haiti has been conducted. The acquired results and subsequent management analysis have effectively assessed the logic of the model. As a result, the model’s performance has been validated and deemed reliable based on the findings and insights obtained.

Originality/value

Ultimately, the model provides the optimal quantities of each product to be shipped and determines the appropriate mode of transportation. Additionally, the application of the epsilon constraint method results in a set of Pareto optimal solutions. Through a comprehensive examination of the presented solutions, valuable insights and analyses can be obtained, contributing to a better understanding of the model’s effectiveness.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2042-6747

Keywords

Open Access
Article
Publication date: 27 July 2022

Yuchuan Du, Han Wang, Qian Gao, Ning Pan, Cong Zhao and Chenglong Liu

Resilience concepts in integrated urban transport refer to the performance of dealing with external shock and the ability to continue to provide transportation services of all…

1702

Abstract

Purpose

Resilience concepts in integrated urban transport refer to the performance of dealing with external shock and the ability to continue to provide transportation services of all modes. A robust transportation resilience is a goal in pursuing transportation sustainability. Under this specified context, while before the perturbations, robustness refers to the degree of the system’s capability of functioning according to its design specifications on integrated modes and routes, redundancy is the degree of duplication of traffic routes and alternative modes to maintain persistency of service in case of perturbations. While after the perturbations, resourcefulness refers to the capacity to identify operational problems in the system, prioritize interventions and mobilize necessary material/ human resources to recover all the routes and modes, rapidity is the speed of complete recovery of all modes and traffic routes in the urban area. These “4R” are the most critical components of urban integrated resilience.

Design/methodology/approach

The trends of transportation resilience's connotation, metrics and strategies are summarized from the literature. A framework is introduced on both qualitative characteristics and quantitative metrics of transportation resilience. Using both model-based and mode-free methodologies that measure resilience in attributes, topology and system performance provides a benchmark for evaluating the mechanism of resilience changes during the perturbation. Correspondingly, different pre-perturbation and post-perturbation strategies for enhancing resilience under multi-mode scenarios are reviewed and summarized.

Findings

Cyber-physic transportation system (CPS) is a more targeted solution to resilience issues in transportation. A well-designed CPS can be applied to improve transport resilience facing different perturbations. The CPS ensures the independence and integrity of every child element within each functional zone while reacting rapidly.

Originality/value

This paper provides a more comprehensive understanding of transportation resilience in terms of integrated urban transport. The fundamental characteristics and strategies for resilience are summarized and elaborated. As little research has shed light on the resilience concepts in integrated urban transport, the findings from this paper point out the development trend of a resilient transportation system for digital and data-driven management.

Details

Smart and Resilient Transportation, vol. 4 no. 2
Type: Research Article
ISSN: 2632-0487

Keywords

Open Access
Article
Publication date: 1 February 2023

Tareq Babaqi and Béla Vizvári

The total capacity of ambulances in metropolitan cities is often less than the post-disaster demand, especially in the case of disasters such as earthquakes. However, because…

Abstract

Purpose

The total capacity of ambulances in metropolitan cities is often less than the post-disaster demand, especially in the case of disasters such as earthquakes. However, because earthquakes are a rare occurrence in these cities, it is unreasonable to maintain the ambulance capacity at a higher level than usual. Therefore, the effective use of ambulances is critical in saving human lives during such disasters. Thus, this paper aims to provide a method for determining how to transport the maximum number of disaster victims to hospitals on time.

Design/methodology/approach

The transportation-related disaster management problem is complex and dynamic. The practical solution needs decomposition and a fast algorithm for determining the next mission of a vehicle. The suggested method is a synthesis of mathematical modeling, scheduling theory, heuristic methods and the Voronoi diagram of geometry. This study presents new elements for the treatment, including new mathematical theorems and algorithms. In the proposed method, each hospital is responsible for a region determined by the Voronoi diagram. The region may change if a hospital becomes full. The ambulance vehicles work for hospitals. For every patient, there is an estimated deadline by which the person must reach the hospital to survive. The second part of the concept is the way of scheduling the vehicles. The objective is to transport the maximum number of patients on time. In terms of scheduling theory, this is a problem whose objective function is to minimize the sum of the unit penalties.

Findings

The Voronoi diagram can be effectively used for decomposing the complex problem. The mathematical model of transportation to one hospital is the P‖ΣUj problem of scheduling theory. This study provides a new mathematical theorem to describe the structure of an algorithm that provides the optimal solution. This study introduces the notion of the partial oracle. This algorithmic tool helps to elaborate heuristic methods, which provide approximations to the precise method. The realization of the partial oracle with constructive elements and elements proves the nonexistence of any solution. This paper contains case studies of three hospitals in Tehran. The results are close to the best possible results that can be achieved. However, obtaining the optimal solution requires a long CPU time, even in the nondynamic case, because the problem P‖ΣUj is NP-complete.

Research limitations/implications

This research suggests good approximation because of the complexity of the problem. Researchers are encouraged to test the proposed propositions further. In addition, the problem in the dynamic environment needs more attention.

Practical implications

If a large-scale earthquake can be expected in a city, the city authorities should have a central control system of ambulances. This study presents a simple and efficient method for the post-disaster transport problem and decision-making. The security of the city can be improved by purchasing ambulances and using the proposed method to boost the effectiveness of post-disaster relief.

Social implications

The population will be safer and more secure if the recommended measures are realized. The measures are important for any city situated in a region where the outbreak of a major earthquake is possible at any moment.

Originality/value

This paper fulfills an identified need to study the operations related to the transport of seriously injured people using emergency vehicles in the post-disaster period in an efficient way.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. 13 no. 1
Type: Research Article
ISSN: 2042-6747

Keywords

Open Access
Article
Publication date: 24 August 2020

Rajali Maharjan, Yashaswi Shrestha, Biplob Rakhal, Saurav Suman, Jurgen Hulst and Shinya Hanaoka

The purpose of this study is to develop a methodology which amalgamates quantitative and qualitative approaches to determine the best placement of mobile logistics hubs (MLH) to…

3730

Abstract

Purpose

The purpose of this study is to develop a methodology which amalgamates quantitative and qualitative approaches to determine the best placement of mobile logistics hubs (MLH) to be established in different parts of Nepal as a part of real-life project, “Augmentation of National and Local-Level Emergency Logistics Preparedness in Nepal” (2017–2020), implemented by the World Food Programme in cooperation with the Government of Nepal.

Design/methodology/approach

The study develops a methodology using a combination of a modified version of the maximal covering location problem (MCLP) and focus group discussion. The MCLP model is used to determine the optimal number and spatial location of MLHs, and focus group discussion is used to identify the five first-priority strategic MLH locations using expert knowledge.

Findings

The authors identify the five first-priority locations for establishing MLHs using an amalgamation of quantitative approach (mathematical model) and qualitative approach (focus group discussion). By amalgamating mathematical model with expert knowledge, findings acceptable to a wide range of stakeholders are obtained. The focus group discussion helps to pinpoint the location of MLHs to city-level granularity which is otherwise impossible with data available on hand.

Research limitations/implications

Although multiple experts’ judgements were obtained via focus group discussion, subjectivity and possible bias is inevitable. Overall, the quantitative results of the study are purely based on the data available during the study period; therefore, having updated data could possibly improve the quality of the results.

Originality/value

This study is the first of its kind that uses an amalgamation of mathematical model and expert knowledge to determine the strategic locations of MLHs and has been successful to an extent that the selected locations have been vetted by the government of Nepal for establishing MLHs and are undergoing implementation in real life. This study also considers multiple disaster scenarios and employs the concepts of human development, disaster risk and transportation accessibility to reflect Nepal's socioeconomic, geo-climatic and topographical features.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. 10 no. 4
Type: Research Article
ISSN: 2042-6747

Keywords

Open Access
Article
Publication date: 16 April 2020

Keith Still, Marina Papalexi, Yiyi Fan and David Bamford

This paper aims to explore the development and application of place crowd safety management tools for areas of public assembly and major events, from a practitioner perspective.

11747

Abstract

Purpose

This paper aims to explore the development and application of place crowd safety management tools for areas of public assembly and major events, from a practitioner perspective.

Design/methodology/approach

The crowd safety risk assessment model is known as design, information, management-ingress, circulation, egress (DIM-ICE) (Still, 2009) is implemented to optimise crowd safety and potentially throughput. Three contrasting case studies represent examples of some of the world’s largest and most challenging crowd safety projects.

Findings

The paper provides some insight into how the DIM-ICE model can be used to aid strategic planning at major events, assess potential crowd risks and to avoid potential crowd safety issues.

Practical implications

It provides further clarity to what effective place management practice is. Evidence-based on the case studies demonstrates that the application of the DIM-ICE model is useful for recognising potential place crowd safety issues and identifying areas for require improvement.

Originality/value

Crowd science is an emerging field of research, which is primarily motivated by place crowd safety issues in congested places; the application and reporting of an evidence-based model (i.e. DIM-ICE model) add to this. The paper addresses a research gap related to the implementation of analytic tools in characterising place crowd dynamics.

Details

Journal of Place Management and Development, vol. 13 no. 4
Type: Research Article
ISSN: 1753-8335

Keywords

Open Access
Article
Publication date: 5 December 2022

Carlos Alberto Rojas Trejos, Jose D. Meisel and Wilson Adarme Jaimes

The purpose of this paper is to review the relevant literature in order to identify trends and suggest some possible directions for future research in the framework of…

2514

Abstract

Purpose

The purpose of this paper is to review the relevant literature in order to identify trends and suggest some possible directions for future research in the framework of humanitarian aid distribution logistics with accessibility constraints.

Design/methodology/approach

The authors developed a systematic literature review to study the state of the art on distribution logistics considering accessibility constraints. The electronic databases used were Web of science, Scopus, Science Direct, Jstor, Emerald, EBSCO, Scielo and Redalyc. As a result, 49 articles were reviewed in detail.

Findings

This study identified some gaps, as well as some research opportunities. The main conclusions are the need for further studies on the interrelationships and hierarchies of multiple actors, explore intermodality, transshipment options and redistribution relief goods to avoid severe shortages in some nodes and excess inventory in others, studies of the vulnerability of transport networks, correlational analysis of road failures and other future lines.

Research limitations/implications

The bibliography is limited to peer-reviewed academic journals due to their academic relevance, accessibility and ease of searching. Most of the studies included in the review were conducted in high-income countries, which may limit the generalizability of the results to low-income countries. However, the authors focused on databases covering important journals on humanitarian logistics.

Originality/value

This paper contextualises and synthesises research into humanitarian aid distribution logistics with accessibility constrains, highlights key themes and suggests areas for further research.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. 13 no. 1
Type: Research Article
ISSN: 2042-6747

Keywords

Open Access
Article
Publication date: 24 October 2022

Annika Eklund, Sofia Karlsson and Lina Gyllencreutz

Major incidents in tunnel environment will pose several challenges for the emergency service organisations in terms of heat, visibility and lack of experiences from working in…

Abstract

Purpose

Major incidents in tunnel environment will pose several challenges for the emergency service organisations in terms of heat, visibility and lack of experiences from working in confined environments. These aspects, in turn, could pose challenges to establish collaboration. This study aims to contribute to the field of collaborative tunnel responses by exploring how “common knowledge” (Edwards, 2011) is built by the emergency services organisations, that is, what the organisations consider important while working on a potentially common problem, and their motives for the interpretations and actions if a major tunnel incident occurs.

Design/methodology/approach

Participants from the road traffic control centre, emergency dispatch centre, emergency medical service, rescue service and police were included in the study. Data from four focus group sessions was analysed using thematic analysis.

Findings

The study revealed that the tunnel environment presents specific aspects of how common knowledge was produced related to lifesaving and safety. The themes structuring mechanisms to reduce uncertainty, managing information for initial priorities, aligning responsibilities without hampering each other's work and adjusting actions to manage distance, illustrated how common knowledge was produced as crucial aspects to a collaborative response. Organising management sites, grasping and communicating risks, accessing the injury victims, was challenged by the confined environment, physical distances and imbalance in access to information and preparedness activities in tunnel environments.

Originality/value

This study offers new insights of common knowledge, by illustrating a motive perspective on collaborative responses in tunnel incidents. Creating interoperability calls not just for readiness for action and tunnel safety, but also training activities acknowledging different interpretations and motives to further develop tunnel responses.

Details

International Journal of Emergency Services, vol. 12 no. 2
Type: Research Article
ISSN: 2047-0894

Keywords

Access

Only Open Access

Year

All dates (30)

Content type

1 – 10 of 30