Search results

1 – 10 of 925
Article
Publication date: 7 September 2023

Vali Dalouji and Nasim Rahimi

In this paper, it can be seen from AFM images of the as-deposited ZnO and CZO films, and the particle size and shape are not clear, while by increasing annealing temperature, they…

Abstract

Purpose

In this paper, it can be seen from AFM images of the as-deposited ZnO and CZO films, and the particle size and shape are not clear, while by increasing annealing temperature, they become distinguishable. By increasing temperature to 600°C, ZnO and CZO, CAZO and aluminum-doped zinc oxide (AZO) films particles became almost spherical. Due to high content of Cu in CZO target, and of Al in AZO target which was 5% weight ratio, doping plays a great role in the subject. Therefore, the annealing processing strongly affect the size and the shape of nanoparticles.

Design/methodology/approach

In this paper, the authors tried to study, in detail, nobel optical characterizations of ZnO films doped by transition metals in different annealing temperature. The authors found that the values of skin depth, optical density, electron–phonon interaction, steepness parameter, band tail width, direct and indirect carriers transitions and the dissipation factor, free carriers density and roughness of films affect the optical properties, especially the optical absorptions of ZnO films doped by transition metals. Also these properties were affected by annealing temperatures. The authors also found that topography characterizations strongly were affected by these parameters.

Findings

The CZO films have maximum value of coordination number ß, with considering NC = 4, Za = 2, Ne = 8. The CZO films annealed at 500 °C have maximum value of optical density. The as-deposited CAZO films have maximum value of steepness parameters in about of 0.13 eV. The as-deposited AZO films have maximum value of dispersion energy Ed in about of 5.75 eV. Optical gap and disordering energy plots of films can be fitted by linear relationships Eg = 0.49 + 0.2 EU and Eg = 0.52 + 0.5 EU, respectively.

Originality/value

With considering Nc = 4, Za = 2, Ne = 8 for ZnO films, coordination number ß has maximum value of 0.198. CZO nanocomposites films annealed at 500°C have maximum value of optical density. Different linear fitting of ln (α) for films were obtained as y = Ax + B where 5<A < 17 and 5<B < 12. As-deposited CAZO nanocomposites films have minimum value of electron phonon interaction in about of 4.91 eV. Optical gap and disordering energy plots can be fitted by linear relationships Eg = 0.49 + 0.2 EU and Eg = 0.52 + 0.5 EU for as-deposited films and films annealed at 500°C, respectively. Steepness parameters of as-deposited CAZO nanocomposites films have maximum value of 0.13 eV. Dispersion energy Ed for as-deposited AZO nanocomposites films has maximum value of 5.75 eV.

Details

Soldering & Surface Mount Technology, vol. 35 no. 5
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 7 November 2023

Metin Sabuncu and Hakan Özdemir

This study aims to identify leather type and authenticity through optical coherence tomography.

Abstract

Purpose

This study aims to identify leather type and authenticity through optical coherence tomography.

Design/methodology/approach

Optical coherence tomography images taken from genuine and faux leather samples were used to create an image dataset, and automated machine learning algorithms were also used to distinguish leather types.

Findings

The optical coherence tomography scan results in a different image based on leather type. This information was used to determine the leather type correctly by optical coherence tomography and automatic machine learning algorithms. Please note that this system also recognized whether the leather was genuine or synthetic. Hence, this demonstrates that optical coherence tomography and automatic machine learning can be used to distinguish leather type and determine whether it is genuine.

Originality/value

For the first time to the best of the authors' knowledge, spectral-domain optical coherence tomography and automated machine learning algorithms were applied to identify leather authenticity in a noncontact and non-invasive manner. Since this model runs online, it can readily be employed in automated quality monitoring systems in the leather industry. With recent technological progress, optical coherence tomography combined with automated machine learning algorithms will be used more frequently in automatic authentication and identification systems.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 22 September 2023

Xinmin Peng, Lumin He, Shuai Ma and Martin Lockett

An alliance portfolio can help latecomer firms to acquire the necessary knowledge and resources to catch up with market leaders. However, how latecomer firms construct an alliance…

Abstract

Purpose

An alliance portfolio can help latecomer firms to acquire the necessary knowledge and resources to catch up with market leaders. However, how latecomer firms construct an alliance portfolio in terms of the nature of windows of opportunity has not been fully analyzed. This paper aims to explore how latecomer firms can build appropriate coalitions according to the nature of the window of opportunity to achieve technological catch-up in different catch-up phases.

Design/methodology/approach

Based on a longitudinal case study from 1984 to 2018 of Sunny Group, now a leading manufacturer of integrated optical components and products, this paper explores the process of technological catch-up of latecomer firms building different types of alliance portfolio in different windows of opportunity.

Findings

This paper finds that there is a sequence when latecomers build an alliance portfolio in the process of catch-up. When the uncertainty of opportunity increases, the governance mechanism of the alliance portfolio will change from contractual to equity-based. Also, latecomer firms build market-dominated and technology-dominated alliance portfolios to overcome their market and technology disadvantages, respectively.

Originality/value

These conclusions not only enrich the theory of latecomer catch-up from the perspective of windows of opportunity but also expand research on alliance portfolio processes from a temporal perspective.

Details

Nankai Business Review International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-8749

Keywords

Article
Publication date: 2 June 2023

Qamar Ul Islam, Haidi Ibrahim, Pan Kok Chin, Kevin Lim and Mohd Zaid Abdullah

Many popular simultaneous localization and mapping (SLAM) techniques have low accuracy, especially when localizing environments containing dynamically moving objects since their…

Abstract

Purpose

Many popular simultaneous localization and mapping (SLAM) techniques have low accuracy, especially when localizing environments containing dynamically moving objects since their presence can potentially cause inaccurate data associations. To address this issue, the proposed FADM-SLAM system aims to improve the accuracy of SLAM techniques in environments containing dynamically moving objects. It uses a pipeline of feature-based approaches accompanied by sparse optical flow and multi-view geometry as constraints to achieve this goal.

Design/methodology/approach

FADM-SLAM, which works with monocular, stereo and RGB-D sensors, combines an instance segmentation network incorporating an intelligent motion detection strategy (iM) with an optical flow technique to improve location accuracy. The proposed AS-SLAM system comprises four principal modules, which are the optical flow mask and iM, the ego motion estimation, dynamic point detection and the feature-based extraction framework.

Findings

Experiment results using the publicly available RGBD-Bonn data set indicate that FADM-SLAM outperforms established visual SLAM systems in highly dynamic conditions.

Originality/value

In summary, the first module generates the indication of dynamic objects by using the optical flow and iM with geometric-wise segmentation, which is then used by the second module to compute the starting point of a posture. The third module, meanwhile, first searches for the dynamic feature points in the environment, and second, eliminates them from further processing. An algorithm based on epipolar constraints is implemented to do this. In this way, only the static feature points are retained, which are then fed to the fourth module for extracting important features.

Details

Robotic Intelligence and Automation, vol. 43 no. 3
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 17 April 2023

Christopher Stutzman, Andrew Przyjemski and Abdalla R. Nassar

Powder bed fusion processes are common due to their ability to build complex components without the need for complex tooling. While additive manufacturing has gained increased…

Abstract

Purpose

Powder bed fusion processes are common due to their ability to build complex components without the need for complex tooling. While additive manufacturing has gained increased interest in industry, academia and government, flaws are often still generated during the deposition process. Many flaws can be avoided through careful processing parameter selections including laser power, hatch spacing, spot size and shielding gas flow rate. The purpose of this paper is to study the effect of shielding gas flow on vapor plume behavior and on final deposition quality. The goal is to understand more fully how each parameter affects the plume and deposition process.

Design/methodology/approach

A filtered-photodiode based sensor was mounted onto a commercial EOS M280 machine to observed plume emissions. Three sets of single tracks were printed, each with one of three gas flow rates (nominal, 75% nominal and 50% nominal). Each set contained single-track beads deposited atop printed pedestals to ensure a steady-state, representative build environment. Each track had a set power and speed combination which covered the typical range of processing parameters. After deposition, coupons were cross-sectioned and bead width and depth were measured. Finally, bead geometry was compared to optical emissions originating in the plume.

Findings

The results show that decreasing gas flow rate, increasing laser power or increasing scan speed led to increased optical emissions. Furthermore, decreasing the gas cross-flow speed led to wider and shallower melt pools.

Originality/value

To the best of the authors’ knowledge, this paper is among the first to present a relationship among laser parameters (laser power, scan speed), gas flow speed, plume emissions and bead geometry using high-speed in situ data in a commercial machine. This study proposes that scattering and attenuation from the plume are responsible for deviations in physical geometry.

Details

Rapid Prototyping Journal, vol. 29 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 9 January 2024

Zujin Jin, Zixin Yin, Siyang Peng and Yan Liu

Large optical mirror processing systems (LOMPSs) consist of multiple subrobots, and correlated disturbance terms between these robots often lead to reduced processing accuracy…

Abstract

Purpose

Large optical mirror processing systems (LOMPSs) consist of multiple subrobots, and correlated disturbance terms between these robots often lead to reduced processing accuracy. This abstract introduces a novel approach, the nonlinear subsystem adaptive dispersed fuzzy compensation control (ADFCC) method, aimed at enhancing the precision of LOMPSs.

Design/methodology/approach

The ADFCC model for LOMPS is developed through a nonlinear fuzzy adaptive algorithm. This model incorporates control parameters and disturbance terms (such as those arising from the external environment, friction and correlation) between subsystems to facilitate ADFCC. Error analysis is performed using the subsystem output parameters, and the resulting errors are used as feedback for compensation control.

Findings

Experimental analysis is conducted, specifically under the commonly used concentric circle processing trajectory in LOMPS. This analysis validates the effectiveness of the control model in enhancing processing accuracy.

Originality/value

The ADFCC strategy is demonstrated to significantly improve the accuracy of LOMPS output, offering a promising solution to the problem of correlated disturbances. This work holds the potential to benefit a wide range of practical applications.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 November 2023

Suheil Khuri

The aim of this study is to offer a contemporary approach for getting optical soliton and traveling wave solutions for the Date–Jimbo–Kashiwara–Miwa equation.

37

Abstract

Purpose

The aim of this study is to offer a contemporary approach for getting optical soliton and traveling wave solutions for the Date–Jimbo–Kashiwara–Miwa equation.

Design/methodology/approach

The approach is based on a recently constructed ansätze strategy. This method is an alternative to the Painleve test analysis, producing results similarly, but in a more practical, straightforward manner.

Findings

The approach proved the existence of both singular and optical soliton solutions. The method and its application show how much better and simpler this new strategy is than current ones. The most significant benefit is that it may be used to solve a wide range of partial differential equations that are encountered in practical applications.

Originality/value

The approach has been developed recently, and this is the first time that this method is applied successfully to extract soliton solutions to the Date–Jimbo–Kashiwara–Miwa equation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 23 October 2023

Shu-Hao Chang

Defining and validating a map of related technologies is critical for managers, investors and inventors. Because of the increase in the applications of and demand for…

Abstract

Purpose

Defining and validating a map of related technologies is critical for managers, investors and inventors. Because of the increase in the applications of and demand for semiconductor lasers, analyzing the technological position of developers has become increasingly critical. Therefore, the purpose of this study is to adopt the technological position analysis to identify mainstream technologies and developments relevant to semiconductor lasers.

Design/methodology/approach

Correspondence analysis and k-means cluster analysis, which are data mining techniques, are used to reveal strategic groups of major competitors in the semiconductor laser market according to their Patent Cooperation Treaty (PCT) patent applications.

Findings

The results of this study reveal that PCT patent applications are generally obtained for masers, optical elements, semiconductor devices and methods for measuring and that technology developers have varying technological positions.

Originality/value

Through position analysis, this study identifies the technological focuses of different manufacturers to obtain information that can guide the allocation of research and development resources.

Details

International Journal of Innovation Science, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-2223

Keywords

Article
Publication date: 15 December 2023

Fei Chu, Hongzhuan Chen, Zheng Zhou, Changlei Feng and Tao Zhang

This paper aims to investigate the bonding of the photonic integrated circuit (PIC) chip with the heat sink using the AlNi self-propagating soldering method.

Abstract

Purpose

This paper aims to investigate the bonding of the photonic integrated circuit (PIC) chip with the heat sink using the AlNi self-propagating soldering method.

Design/methodology/approach

Compared to industrial optical modules, optical modules for aerospace applications require better reliability and stability, which is hard to achieve via the dispensing adhesive process that is used for traditional industrial optical modules. In this paper, 25 µm SAC305 solder foils and the AlNi nanofoil heat source were used to bond the back of the PIC chip with the heat sink. The temperature field and temperature history were analyzed by the finite element analysis (FEA) method. The junction-to-case thermal resistance is 0.0353°C/W and reduced by 85% compared with the UV hybrid epoxy joint.

Findings

The self-propagating reaction ends within 2.82 ms. The maximum temperature in the PIC operating area during the process is 368.5°C. The maximum heating and cooling rates of the solder were 1.39 × 107°C/s and −5.15 × 106°C/s, respectively. The microstructure of SAC305 under self-propagating reaction heating is more refined than the microstructure of SAC305 under reflow. The porosity of the heat sink-SAC305-PIC chip self-propagating joint is only 4.7%. Several metastable phases appear as AuSn3.4 and AgSn3.

Originality/value

A new bonding technology was used to form the bonding between the PIC chip with the heat sink for the aerospace optical module. The reliability and thermal resistance of the joint are better than that of the UV hybrid epoxy joint.

Details

Soldering & Surface Mount Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 13 July 2023

Abdul Lateef, Zulfiqar Ali Raza, Muhammad Aslam, Muhammad Shoaib Ur Rehman, Asma Iftikhar and Abdul Zahir

This study aims to fabricate multiwalled carbon nanotubes (MWCNTs)-mediated polyvinyl alcohol (PVA) composite films using the solution casting approach.

Abstract

Purpose

This study aims to fabricate multiwalled carbon nanotubes (MWCNTs)-mediated polyvinyl alcohol (PVA) composite films using the solution casting approach.

Design/methodology/approach

The prepared films were evaluated for diverse structural, surface, optical and electrical attributes using advanced analytical techniques, i.e. electron microscopy for surface morphology, Fourier transform infrared spectroscopy for tracing chemical functionalities, x-ray diffraction (XRD) for crystal patterns, water contact angle (WCA) analysis for surface wettability and UV visible spectroscopy for optical absorption parameters. The specimens were also investigated for certain rheological, mechanical and electrical properties, where applicable.

Findings

The surface morphology results expressed a better dispersion of MWCNTs in the resultant PVA-based nanocomposite film. The XRD analysis exhibited that the nanocomposite film was crystalline. The surface wettability analysis indicated that with the inclusion of MWCNTs, the WCA of the resultant nanocomposite film improved to 89.4° from 44° with the pristine PVA film. The MWCNTs (1.00%, w/w) incorporated PVA-based film exhibited a tensile strength of 54.0 MPa as compared to that of native PVA as 25.3 MPa film. There observed a decreased bandgap (from 5.25 to 5.14 eV) on incorporating the MWCNTs in the PVA-based nanocomposite film.

Practical implications

The MWCNTs’ inclusion in the PVA matrix could enhance the AC conductivity of the resultant nanocomposite film. The prepared nanocomposite film might be useful in designing certain optoelectronic devices.

Originality/value

The results demonstrated the successful MWCNTs mediation in the PVA-based composite films expressed good intercalation of the precursors; this resulted in decreased bandgap, usually, desirable for optoelectronic applications.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 925