Search results

1 – 10 of 266
Open Access
Article
Publication date: 5 February 2024

Krištof Kovačič, Jurij Gregorc and Božidar Šarler

This study aims to develop an experimentally validated three-dimensional numerical model for predicting different flow patterns produced with a gas dynamic virtual nozzle (GDVN).

Abstract

Purpose

This study aims to develop an experimentally validated three-dimensional numerical model for predicting different flow patterns produced with a gas dynamic virtual nozzle (GDVN).

Design/methodology/approach

The physical model is posed in the mixture formulation and copes with the unsteady, incompressible, isothermal, Newtonian, low turbulent two-phase flow. The computational fluid dynamics numerical solution is based on the half-space finite volume discretisation. The geo-reconstruct volume-of-fluid scheme tracks the interphase boundary between the gas and the liquid. To ensure numerical stability in the transition regime and adequately account for turbulent behaviour, the k-ω shear stress transport turbulence model is used. The model is validated by comparison with the experimental measurements on a vertical, downward-positioned GDVN configuration. Three different combinations of air and water volumetric flow rates have been solved numerically in the range of Reynolds numbers for airflow 1,009–2,596 and water 61–133, respectively, at Weber numbers 1.2–6.2.

Findings

The half-space symmetry allows the numerical reconstruction of the dripping, jetting and indication of the whipping mode. The kinetic energy transfer from the gas to the liquid is analysed, and locations with locally increased gas kinetic energy are observed. The calculated jet shapes reasonably well match the experimentally obtained high-speed camera videos.

Practical implications

The model is used for the virtual studies of new GDVN nozzle designs and optimisation of their operation.

Originality/value

To the best of the authors’ knowledge, the developed model numerically reconstructs all three GDVN flow regimes for the first time.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 26 July 2023

Jorge Manuel Mercado-Colmenero, M. Dolores La Rubia, Elena Mata-García, Moisés Rodriguez-Santiago and Cristina Martin-Doñate

Because of the anisotropy of the process and the variability in the quality of printed parts, finite element analysis is not directly applicable to recycled materials manufactured…

Abstract

Purpose

Because of the anisotropy of the process and the variability in the quality of printed parts, finite element analysis is not directly applicable to recycled materials manufactured using fused filament fabrication. The purpose of this study is to investigate the numerical-experimental mechanical behavior modeling of the recycled polymer, that is, recyclable polyethylene terephthalate (rPET), manufactured by a deposition FFF process under compressive stresses for new sustainable designs.

Design/methodology/approach

In all, 42 test specimens were manufactured and analyzed according to the ASTM D695-15 standards. Eight numerical analyzes were performed on a real design manufactured with rPET using Young's compression modulus from the experimental tests. Finally, eight additional experimental tests under uniaxial compression loads were performed on the real sustainable design for validating its mechanical behavior versus computational numerical tests.

Findings

As a result of the experimental tests, rPET behaves linearly until it reaches the elastic limit, along each manufacturing axis. The results of this study confirmed the design's structural safety by the load scenario and operating boundary conditions. Experimental and numerical results show a difference of 0.001–0.024 mm, allowing for the rPET to be configured as isotropic in numerical simulation software without having to modify its material modeling equations.

Practical implications

The results obtained are of great help to industry, designers and researchers because they validate the use of recycled rPET for the ecological production of real-sustainable products using MEX technology under compressive stress and its configuration for numerical simulations. Major design companies are now using recycled plastic materials in their high-end designs.

Originality/value

Validation results have been presented on test specimens and real items, comparing experimental material configuration values with numerical results. Specifically, to the best of the authors’ knowledge, no industrial or scientific work has been conducted with rPET subjected to uniaxial compression loads for characterizing experimentally and numerically the material using these results for validating a real case of a sustainable industrial product.

Details

Rapid Prototyping Journal, vol. 29 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 15 March 2023

Xiao Fan Zhao, Andreas Wimmer and Michael F. Zaeh

The purpose of this paper is to demonstrate the impact of the welding sequence on the substrate plate distortion during the wire and arc additive manufacturing (WAAM) process…

1080

Abstract

Purpose

The purpose of this paper is to demonstrate the impact of the welding sequence on the substrate plate distortion during the wire and arc additive manufacturing (WAAM) process. This paper also aims to show the capability of finite element simulations in the prediction of those thermally induced distortions.

Design/methodology/approach

An experiment was conducted in which solid aluminum blocks were manufactured using two different welding sequences. The distortion of the substrates was measured at predefined positions and converted into bending and torsion values. Subsequently, a weakly coupled thermo-mechanical finite element model was created using the Abaqus simulation software. The model was calibrated and validated with data gathered from the experiments.

Findings

The results of this paper showed that the welding sequence of a part significantly affects the formation of thermally induced distortions of the final part. The calibrated simulation model was able to capture the different distortion behavior attributed to the welding sequences.

Originality/value

Within this work, a simulation model was developed capable of predicting the distortion of WAAM parts in advance. The findings of this paper can be used to improve the design of WAAM welding sequences while avoiding high experimental efforts.

Details

Rapid Prototyping Journal, vol. 29 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 7 May 2024

Mohammed Y. Fattah, Mahmood R. Mahmood and Mohammed F. Aswad

The main objective of the present research is to investigate the benefits of using geogrid reinforcement in minimizing the rate of deterioration of ballasted rail track geometry…

Abstract

Purpose

The main objective of the present research is to investigate the benefits of using geogrid reinforcement in minimizing the rate of deterioration of ballasted rail track geometry resting on soft clay and to explore the effect of load amplitude, load frequency, presence of geogrid layer in ballast layer and ballast layer thickness on the behavior of track system. These variables are studied both experimentally and numerically. This paper examines the effect of geogrid reinforced ballast laying on a layer of clayey soil as a subgrade layer, where a half full scale railway tests are conducted as well as a theoretical analysis is performed.

Design/methodology/approach

The experimental tests work consists of laboratory model tests to investigate the reduction in the compressibility and stress distribution induced in soft clay under a ballast railway reinforced by geogrid reinforcement subjected to dynamic load. Experimental model based on an approximate half scale for general rail track engineering practice is adopted in this study which is used in Iraqi railways. The investigated parameters are load amplitude, load frequency and presence of geogrid reinforcement layer. A half full-scale railway was constructed for carrying out the tests, which consists of two rails 800 mm in length with three wooden sleepers (900 mm × 90 mm × 90 mm). The ballast was overlying 500 mm thick clay layer. The tests were carried out with and without geogrid reinforcement, the tests were carried out in a well tied steel box of 1.5 m length × 1 m width × 1 m height. A series of laboratory tests were conducted to investigate the response of the ballast and the clay layers where the ballast was reinforced by a geogrid. Settlement in ballast and clay, was measured in reinforced and unreinforced ballast cases. In addition to the laboratory tests, the application of numerical analysis was made by using the finite element program PLAXIS 3D 2013.

Findings

It was concluded that the settlement increased with increasing the simulated train load amplitude, there is a sharp increase in settlement up to the cycle 500 and after that, there is a gradual increase to level out between, 2,500 and 4,500 cycles depending on the load frequency. There is a little increase in the induced settlement when the load amplitude increased from 0.5 to 1 ton, but it is higher when the load amplitude increased to 2 ton, the increase in settlement depends on the geogrid existence and the other studied parameters. Both experimental and numerical results showed the same behavior. The effect of load frequency on the settlement ratio is almost constant after 500 cycles. In general, for reinforced cases, the effect of load frequency on the settlement ratio is very small ranging between 0.5 and 2% compared with the unreinforced case.

Originality/value

Increasing the ballast layer thickness from 20 cm to 30 cm leads to decrease the settlement by about 50%. This ascertains the efficiency of ballast in spreading the waves induced by the track.

Details

Railway Sciences, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 8 November 2023

Armando Di Meglio, Nicola Massarotti, Samuel Rolland and Perumal Nithiarasu

This study aims to analyse the non-linear losses of a porous media (stack) composed by parallel plates and inserted in a resonator tube in oscillatory flows by proposing numerical…

Abstract

Purpose

This study aims to analyse the non-linear losses of a porous media (stack) composed by parallel plates and inserted in a resonator tube in oscillatory flows by proposing numerical correlations between pressure gradient and velocity.

Design/methodology/approach

The numerical correlations origin from computational fluid dynamics simulations, conducted at the microscopic scale, in which three fluid channels representing the porous media are taken into account. More specifically, for a specific frequency and stack porosity, the oscillating pressure input is varied, and the velocity and the pressure-drop are post-processed in the frequency domain (Fast Fourier Transform analysis).

Findings

It emerges that the viscous component of pressure drop follows a quadratic trend with respect to velocity inside the stack, while the inertial component is linear also at high-velocity regimes. Furthermore, the non-linear coefficient b of the correlation ax + bx2 (related to the Forchheimer coefficient) is discovered to be dependent on frequency. The largest value of the b is found at low frequencies as the fluid particle displacement is comparable to the stack length. Furthermore, the lower the porosity the higher the Forchheimer term because the velocity gradients at the stack geometrical discontinuities are more pronounced.

Originality/value

The main novelty of this work is that, for the first time, non-linear losses of a parallel plate stack are investigated from a macroscopic point of view and summarised into a non-linear correlation, similar to the steady-state and well-known Darcy–Forchheimer law. The main difference is that it considers the frequency dependence of both Darcy and Forchheimer terms. The results can be used to enhance the analysis and design of thermoacoustic devices, which use the kind of stacks studied in the present work.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 8 April 2024

Oussama-Ali Dabaj, Ronan Corin, Jean-Philippe Lecointe, Cristian Demian and Jonathan Blaszkowski

This paper aims to investigate the impact of combining grain-oriented electrical steel (GOES) grades on specific iron losses and the flux density distribution within a…

Abstract

Purpose

This paper aims to investigate the impact of combining grain-oriented electrical steel (GOES) grades on specific iron losses and the flux density distribution within a single-phase magnetic core.

Design/methodology/approach

This paper presents the results of finite-element method (FEM) simulations investigating the impact of mixing two different GOES grades on losses of a single-phase magnetic core. The authors used different models: a 3D model with a highly detailed geometry including both saturation and anisotropy, as well as a simplified 2D model to save computation time. The behavior of the flux distribution in the mixed magnetic core is analyzed. Finally, the results from the numerical simulations are compared with experimental results.

Findings

The specific iron losses of a mixed magnetic core exhibit a nonlinear decrease with respect to the GOES grade with the lowest losses. Analyzing the magnetic core behavior using 2D and 3D FEM shows that the rolling direction of the GOES grades plays a critical role on the nonlinearity variation of the specific losses.

Originality/value

The novelty of this research lies in achieving an optimum trade-off between the manufacturing cost and the core efficiency by combining conventional and high-performance GOES grade in a single-phase magnetic core.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 25 April 2023

Rene Prieler, Simon Pletzer, Stefan Thusmer, Günther Schwabegger and Christoph Hochenauer

In fire resistance tests (FRTs) of building materials, a crucial criterion to pass the test procedure is to avoid the leakage of the hot flue gases caused by gaps and cracks…

Abstract

Purpose

In fire resistance tests (FRTs) of building materials, a crucial criterion to pass the test procedure is to avoid the leakage of the hot flue gases caused by gaps and cracks occurring due to the thermal exposure. The present study's aim is to calculate the deformation of a steel door, which is embedded within a wall made of bricks, and qualitatively determine the flue gas leakage.

Design/methodology/approach

A computational fluid dynamics/finite element method (CFD/FEM) coupling was introduced representing an intermediate approach between a one-way and a full two-way coupling methodology, leading to a simplified two-way coupling (STWC). In contrast to a full two way-coupling, the heat transfer through the steel door was simulated based on a one-way approach. Subsequently, the predicted temperatures at the door from the one-way simulation were used in the following CFD/FEM simulation, where the fluid flow inside and outside the furnace as well as the deformation of the door were calculated simultaneously.

Findings

The simulation showed large gaps and flue gas leakage above the door lock and at the upper edge of the door, which was in close accordance to the experiment. Furthermore, it was found that STWC predicted similar deformations compared to the one-way coupling.

Originality/value

Since two-way coupling approaches for fluid/structure interaction in fire research are computationally demanding, the number of studies is low. Only a few are dealing with the flue gas exit from rooms due to destruction of solid components. Thus, the present study is the first two-way approach dealing with flue gas leakage due to gap formation.

Details

Journal of Structural Fire Engineering, vol. 15 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Open Access
Article
Publication date: 4 April 2024

Weihua Zhang, Yuanchen Zeng, Dongli Song and Zhiwei Wang

The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system. This paper aims to…

Abstract

Purpose

The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system. This paper aims to define and substantiate the assessment of the structural integrity and dynamical integrity of high-speed trains in both theory and practice. The key principles and approaches will be proposed, and their applications to high-speed trains in China will be presented.

Design/methodology/approach

First, the structural integrity and dynamical integrity of high-speed trains are defined, and their relationship is introduced. Then, the principles for assessing the structural integrity of structural and dynamical components are presented and practical examples of gearboxes and dampers are provided. Finally, the principles and approaches for assessing the dynamical integrity of high-speed trains are presented and a novel operational assessment method is further presented.

Findings

Vehicle system dynamics is the core of the proposed framework that provides the loads and vibrations on train components and the dynamic performance of the entire vehicle system. For assessing the structural integrity of structural components, an open-loop analysis considering both normal and abnormal vehicle conditions is needed. For assessing the structural integrity of dynamical components, a closed-loop analysis involving the influence of wear and degradation on vehicle system dynamics is needed. The analysis of vehicle system dynamics should follow the principles of complete objects, conditions and indices. Numerical, experimental and operational approaches should be combined to achieve effective assessments.

Originality/value

The practical applications demonstrate that assessing the structural integrity and dynamical integrity of high-speed trains can support better control of critical defects, better lifespan management of train components and better maintenance decision-making for high-speed trains.

Details

Railway Sciences, vol. 3 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 3 March 2023

Yu-Chung Chang

From the quantum game perspective, this paper aims to study a green product optimal pricing problem of the dual-channel supply chain under the cooperation of the retailer and…

1076

Abstract

Purpose

From the quantum game perspective, this paper aims to study a green product optimal pricing problem of the dual-channel supply chain under the cooperation of the retailer and manufacturer to reduce carbon emissions.

Design/methodology/approach

The decentralized and centralized decision-making optimal prices and profits are obtained by establishing the classical and quantum game models. Then the classical game and quantum game are compared.

Findings

When the quantum entanglement is greater than 0, the selling prices of the quantum model are higher than the classical model. Through theoretical research and numerical analysis results, centralized decision-making is more economical and efficient than decentralized decision-making. Publicity and education on carbon emission reduction for consumers will help consumers accept carbon emission reduction products with slightly higher prices. When the emission reduction increases too fast, the cost of emission reduction will form a significant burden and affect the profits of manufacturers and supply chain systems.

Originality/value

From the perspective of the quantum game, the author explores the optimal prices of green product and compares them with the classical game.

Details

Journal of Business & Industrial Marketing, vol. 38 no. 13
Type: Research Article
ISSN: 0885-8624

Keywords

Open Access
Article
Publication date: 25 March 2024

Florian Follert and Werner Gleißner

From the buying club’s perspective, the transfer of a player can be interpreted as an investment from which the club expects uncertain future benefits. This paper aims to develop…

Abstract

Purpose

From the buying club’s perspective, the transfer of a player can be interpreted as an investment from which the club expects uncertain future benefits. This paper aims to develop a decision-oriented approach for the valuation of football players that could theoretically help clubs determine the subjective value of investing in a player to assess its potential economic advantage.

Design/methodology/approach

We build on a semi-investment-theoretical risk-value model and elaborate an approach that can be applied in imperfect markets under uncertainty. Furthermore, we illustrate the valuation process with a numerical example based on fictitious data. Due to this explicitly intended decision support, our approach differs fundamentally from a large part of the literature, which is empirically based and attempts to explain observable figures through various influencing factors.

Findings

We propose a semi-investment-theoretical valuation approach that is based on a two-step model, namely, a first valuation at the club level and a final calculation to determine the decision value for an individual player. In contrast to the previous literature, we do not rely on an econometric framework that attempts to explain observable past variables but rather present a general, forward-looking decision model that can support managers in their investment decisions.

Originality/value

This approach is the first to show managers how to make an economically rational investment decision by determining the maximum payable price. Nevertheless, there is no normative requirement for the decision-maker. The club will obviously have to supplement the calculus with nonfinancial objectives. Overall, our paper can constitute a first step toward decision-oriented player valuation and for theoretical comparison with practical investment decisions in football clubs, which obviously take into account other specific sports team decisions.

Details

Management Decision, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0025-1747

Keywords

Access

Only content I have access to

Year

Last 6 months (266)

Content type

1 – 10 of 266