Search results

1 – 8 of 8
Article
Publication date: 19 August 2024

S. Sridhar and M. Muthtamilselvan

This paper aims to present a study on stability analysis of Jeffrey fluids in the presence of emergent chemical gradients within microbial systems of anisotropic porous media.

Abstract

Purpose

This paper aims to present a study on stability analysis of Jeffrey fluids in the presence of emergent chemical gradients within microbial systems of anisotropic porous media.

Design/methodology/approach

This study uses an effective method that combines non-dimensionalization, normal mode analysis and linear stability analysis to examine the stability of Jeffrey fluids in the presence of emergent chemical gradients inside microbial systems in anisotropic porous media. The study focuses on determining critical values and understanding how temperature gradients, concentration gradients and chemical reactions influence the onset of bioconvection patterns. Mathematical transformations and analytical approaches are used to investigate the system’s complicated dynamics and the interaction of numerous characteristics that influence stability.

Findings

The analysis is performed using the Jeffrey-Darcy type and Boussinesq estimation. The process involves using non-dimensionalization, using the normal mode approach and conducting linear stability analysis to convert the field equations into ordinary differential equations. The conventional thermal Rayleigh Darcy number RDa,c is derived as a comprehensive function of various parameters, and it remains unaffected by the bio convection Lewis number Łe. Indeed, elevating the values of ζ and γ in the interval of 0 to 1 has been noted to expedite the formation of bioconvection patterns while concurrently expanding the dimensions of convective cells. The purpose of this investigation is to learn how the temperature gradient affects the concentration gradient and, in turn, the stability and initiation of bioconvection by taking the Soret effect into the equation. The results provide insightful understandings of the intricate dynamics of fluid systems affected by chemical and biological elements, providing possibilities for possible industrial and biological process applications. The findings illustrate that augmenting both microbe concentration and the bioconvection Péclet number results in an unstable system. In this study, the experimental Rayleigh number RDa,c was determined to be 4π2at the critical wave number ( δcˇ) of π.

Originality/value

The study’s novelty originated from its investigation of a novel and complicated system incorporating Jeffrey fluids, emergent chemical gradients and anisotropic porous media, as well as the use of mathematical and analytical approaches to explore the system’s stability and dynamics.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 August 2024

Mehrdad Leylabi, Sara Malekan and Mehdi Majidpour

The aim of this paper is to explain that what main characteristics financial technologies should have so that lead to improve the transparency of institutions and whether the…

Abstract

Purpose

The aim of this paper is to explain that what main characteristics financial technologies should have so that lead to improve the transparency of institutions and whether the integrated monetary banking system deployed in free-interest institutions has affected the transparency of these institutions in terms of those characteristics or not? In this study, the integrated monetary banking system will be studied subject to implementation of the Shafagh project.

Design/methodology/approach

Based on the literature review and the experts' opinions, the principles of the research questions were explained. Then, according to the dimensions of the research conceptual model, questions related to research questions were considered as the item for analysis in the modeling of structural equations. In the next step, 278 employees and managers of interest-free institutions were selected, by simple random sampling method, to answer the questionnaire. Data collected is analyzed by using structural equations method.

Findings

The results of the analysis indicates that the impact of the dimensions of strategic, technical, organizational and cultural factors – identified as the main characteristics of a financial system in this study – on the transparency of the transactions of the interest-free institutions is significant.

Research limitations/implications

The results were obtained by focusing on the qualitative factors and also on the culture on free-interest institutions.

Practical implications

By investigating the issues and factors that the developers, consultants and institutions’ managers need to address and also giving a conceptual model, this study assists managers and generally financial institutions in developing an integrated banking system in a way that will be more likely to improve transparency in those organizations.

Originality/value

This study pioneers a comprehensive conceptual model, surpassing prior research that focused on isolated criteria. This novel approach enriches understanding of core banking systems' impact on financial transparency. This groundbreaking study uniquely focuses on free-interest institutions, traditionally presumed to be transparent but never before studied.

Details

International Journal of Islamic and Middle Eastern Finance and Management, vol. 17 no. 5
Type: Research Article
ISSN: 1753-8394

Keywords

Article
Publication date: 30 July 2024

Frederike Hennig, Jenny Sarah Wesche, Lisa Handke and Rudolf Kerschreiter

Mentoring supports children, adolescents and young adults on their career paths and presents an important extracurricular educational format. The COVID-19 pandemic created a…

Abstract

Purpose

Mentoring supports children, adolescents and young adults on their career paths and presents an important extracurricular educational format. The COVID-19 pandemic created a strong impetus for the deployment of virtual mentoring programs (VMPs), in which mentors and mentees communicate completely or predominantly through information and communication technologies (ICTs). Because it is unclear whether VMPs remain an attractive offer to mentors and mentees in post-pandemic times, this study aims to investigate the specific motivations of mentors and mentees to participate in VMPs and to draw conclusions about the effective design of VMPs.

Design/methodology/approach

In a qualitative study, the authors recruited 200 university students for an online survey, in which participants provided text responses regarding their motivations to participate in a youth or academic VMP as a mentor or mentee.

Findings

Potential mentors and mentees expect social components in VMPs. However, the results suggest that participants expect less psychosocial compared to career-related support from virtual mentoring, expect meaningful connections to be established only to a certain extent and do not expect role modeling from mentors. Furthermore, participants voiced mixed opinions about the virtual nature of mentoring programs, revealing a general field of tension (i.e. virtuality improves flexibility vs virtuality impairs relationship building). On this basis, design suggestions regarding VMPs are provided.

Originality/value

This study expands existing knowledge about VMPs by analyzing relevant factors when forming the intention to participate in a mentoring program, considering both youth and academic mentoring.

Details

Information and Learning Sciences, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-5348

Keywords

Article
Publication date: 8 July 2024

A.M. Mohamad, Dhananjay Yadav, Mukesh Kumar Awasthi, Ravi Ragoju, Krishnendu Bhattacharyya and Amit Mahajan

The purpose of the study is to analytically as well as numerically investigate the weight of throughflow on the onset of Casson nanofluid layer in a permeable matrix. This study…

Abstract

Purpose

The purpose of the study is to analytically as well as numerically investigate the weight of throughflow on the onset of Casson nanofluid layer in a permeable matrix. This study examines both the marginal and over stable kind of convective movement in the system.

Design/methodology/approach

A double-phase model is used for Casson nanofluid, which integrates the impacts of thermophoresis and Brownian wave, whereas for flow in the porous matrix the altered Darcy model is occupied under the statement that nanoparticle flux is disappear on the boundaries. The resultant eigenvalue problem is resolved analytically as well as numerically with the help of Galerkin process with the Casson nanofluid Rayleigh–Darcy number as the eigenvalue.

Findings

The findings revealed that the throughflow factor postpones the arrival of convective flow and reduces the extent of convective cells, whereas the Casson factor, the Casson nanoparticle Rayleigh–Darcy number and the reformed diffusivity ratio promote convective motion and also decrease the extent of convective cells.

Originality/value

Controlling the convective movement in heat transfer systems that generate high heat flux is a real mechanical challenge. The proposed framework proved that the use of throughflow is one of the most important ways to control the convective movement in Casson nanofluid. To the best of the authors’ knowledge, no inspection has been established in the literature that studies the outcome of throughflow on the Casson nanofluid convective flow in a porous medium layer. However, the convective flow of Casson nanofluid finds many applications in improving heat transmission and energy efficiency in a range of thermal systems, such as the cooling of heat-generating elements in electronic devices, heat exchangers, pharmaceutical practices and hybrid-powered engines, where throughflow can play a significant role in controlling the convective motion.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Abstract

Details

The Emerald Guide to Ann Oakley
Type: Book
ISBN: 978-1-80071-561-5

Article
Publication date: 5 April 2024

Cédric Gervais Njingang Ketchate, Oluwole Daniel Makinde, Pascalin Tiam Kapen and Didier Fokwa

This paper aims to investigate the hydrodynamic instability properties of a mixed convection flow of nanofluid in a porous channel.

Abstract

Purpose

This paper aims to investigate the hydrodynamic instability properties of a mixed convection flow of nanofluid in a porous channel.

Design/methodology/approach

The treated single-phase nanofluid is a suspension consisting of water as the working fluid and alumina as a nanoparticle. The anisotropy of the porous medium and the effects of the inclination of the magnetic field are highlighted. The effects of viscous dissipation and thermal radiation are incorporated into the energy equation. The eigenvalue equation system resulting from the stability analysis is processed numerically by the spectral collocation method.

Findings

Analysis of the results in terms of growth rate reveals that increasing the volume fraction of nanoparticles increases the critical Reynolds number. Parameters such as the mechanical anisotropy parameter and Richardson number have a destabilizing effect. The Hartmann number, permeability parameter, magnetic field inclination, Prandtl number, wave number and thermal radiation parameter showed a stabilizing effect. The Eckert number has a negligible effect on the growth rate of the disturbances.

Originality/value

Linear stability analysis of Magnetohydrodynamics (MHD) mixed convection flow of a radiating nanofluid in porous channel in presence of viscous dissipation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 July 2023

Mohammed-Alamine El Houssaini, Abdellah Nabou, Abdelali Hadir, Souad El Houssaini and Jamal El Kafi

Ad hoc mobile networks are commonplace in every aspect of our everyday life. They become essential in many industries and have uses in logistics, science and the military…

Abstract

Purpose

Ad hoc mobile networks are commonplace in every aspect of our everyday life. They become essential in many industries and have uses in logistics, science and the military. However, because they operate mostly in open spaces, they are exposed to a variety of dangers. The purpose of this study is to introduce a novel method for detecting the MAC layer misbehavior.

Design/methodology/approach

The proposed novel approach is based on exponential smoothing for throughput prediction to address this MAC layer misbehavior. The real and expected throughput are processed using an exponential smoothing algorithm to identify this attack, and if these metrics exhibit a trending pattern, an alarm is then sent.

Findings

The effect of the IEEE 802.11 MAC layer misbehavior on throughput was examined using the NS-2 network simulator, as well as the approval of our novel strategy. The authors have found that a smoothing factor value that is near to 0 provides a very accurate throughput forecast that takes into consideration the recent history of the updated values of the real value. As for the smoothing factor values that are near to 1, they are used to identify MAC layer misbehavior.

Originality/value

According to the authors’ modest knowledge, this new scheme has not been proposed in the state of the art for the detection of greedy behavior in mobile ad hoc networks.

Details

International Journal of Pervasive Computing and Communications, vol. 20 no. 2
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 21 September 2022

Wanjun Yin and Lin-na Jiang

The purpose of this paper through the redundant monitoring unit reflecting the real-time temperature change of the array, an adaptive refresh circuit based on temperature is…

Abstract

Purpose

The purpose of this paper through the redundant monitoring unit reflecting the real-time temperature change of the array, an adaptive refresh circuit based on temperature is designed.

Design/methodology/approach

This paper proposed a circuit design for temperature-adaptive refresh with a fixed refresh frequency of traditional memory, high refresh power consumption at low temperature and low refresh frequency at high temperature.

Findings

Adding a metal oxide semiconductor (MOS) redundancy monitoring unit consistent with the storage unit to the storage bank can monitor the temperature change of the storage bank in real time, so that temperature-based memory adaptive refresh can be implemented.

Originality/value

According to the characteristics that the data holding time of dynamic random access memory storage unit decreases with the increase of temperature, a MOS redundant monitoring unit which is consistent with the storage unit is added to the storage array with the 2T storage unit as the core.

Details

Circuit World, vol. 50 no. 2/3
Type: Research Article
ISSN: 0305-6120

Keywords

1 – 8 of 8