Search results

1 – 10 of over 2000
Article
Publication date: 13 September 2024

Yewei Ouyang, Guoqing Huang and Shiyi He

There are many safety hazards in construction workplaces, and inattention to the hazards is the main reason why construction workers failed to identify the hazards. Reasonably…

Abstract

Purpose

There are many safety hazards in construction workplaces, and inattention to the hazards is the main reason why construction workers failed to identify the hazards. Reasonably allocating attention during hazard identification is critical for construction workers’ safety. However, adverse working environments in job sites may undermine workers’ attention. Previous studies failed to investigate the impacts of environmental factors on attention allocation, which hinders taking appropriate measures to eliminate safety incidents when encountering adverse working environments. This study aims to examine the effects of workplace noise and heat exposure on workers’ attention allocation during construction hazard identification to fill the research gap.

Design/methodology/approach

This study applied an experimental study where a within-subject experiment was designed. Fifteen construction workers were invited to perform hazard identification tasks in panoramic virtual reality. They were exposed to three noise levels (60, 85 and 100 dBA) in four thermal conditions (26°C, 50% RH; 33°C, 50% RH; 30°C, 70% RH; 33°C, 70% RH). Their eye movements were recorded to indicate their attention allocation under each condition.

Findings

The results show that noise exposure reduced workers’ attention to hazardous areas and the impacts increased with the noise level. Heat exposure also reduced the attention, but it did not increase with the heat stress but with subjects’ thermal discomfort. The attention was impacted more by noise than heat exposure. Noise exposure in the hot climate should be more noteworthy because lower levels of noise would lead to significant changes. These visual characteristics led to poorer identification accuracy.

Originality/value

This study could extend the understanding of the relationship between adverse environmental factors and construction safety. Understanding the intrinsic reasons for workers' failed identification may also provide insights for the industry to enhance construction safety under adverse environments.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 25 July 2024

Wei-Chao Yang, Guo-Zhi Li, E Deng, De-Hui Ouyang and Zhi-Peng Lu

Sustainable urban rail transit requires noise barriers. However, these barriers’ durability varies due to the differing aerodynamic impacts they experience. The purpose of this…

Abstract

Purpose

Sustainable urban rail transit requires noise barriers. However, these barriers’ durability varies due to the differing aerodynamic impacts they experience. The purpose of this paper is to investigate the aerodynamic discrepancies of trains when they meet within two types of rectangular noise barriers: fully enclosed (FERNB) and semi-enclosed with vertical plates (SERNBVB). The research also considers the sensitivity of the scale ratio in these scenarios.

Design/methodology/approach

A 1:16 scaled moving model test analyzed spatiotemporal patterns and discrepancies in aerodynamic pressures during train meetings. Three-dimensional computational fluid dynamics models, with scale ratios of 1:1, 1:8 and 1:16, used the improved delayed detached eddy simulation turbulence model and slip grid technique. Comparing scale ratios on aerodynamic pressure discrepancies between the two types of noise barriers and revealing the flow field mechanism were done. The goal is to establish the relationship between aerodynamic pressure at scale and in full scale.

Findings

The aerodynamic pressure on SERNBVB is influenced by the train’s head and tail waves, whereas for FERNB, it is affected by pressure wave and head-tail waves. Notably, SERNBVB's aerodynamic pressure is more sensitive to changes in scale ratio. As the scale ratio decreases, the aerodynamic pressure on the noise barrier gradually increases.

Originality/value

A train-meeting moving model test is conducted within the noise barrier. Comparison of aerodynamic discrepancies during train meets between two types of rectangular noise barriers and the relationship between the scale and the full scale are established considering the modeling scale ratio.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 July 2024

Manigandan Sekar, Vijayaraja Kengaiah, Praveenkumar T.R. and Gunasekar P.

The purpose of this study is to investigate the effect of coaxial swirlers on acoustic emission and reduction of potential core length in jet engines.

Abstract

Purpose

The purpose of this study is to investigate the effect of coaxial swirlers on acoustic emission and reduction of potential core length in jet engines.

Design/methodology/approach

The swirlers are introduced in the form of curved vanes with angles varied from 0° to 130°, corresponding to swirl numbers of 0–1.5. These swirlers are fixed in the annular chamber and tested at different nozzle pressure ratios of 2, 4 and 6.

Findings

The study finds that transonic tones exist for the nonswirl jet, creating an unfavorable effect. However, these screech tones are eliminated by introducing a swirl jet at the nozzle exit. Weak swirl shows a greater reduction in noise than strong swirl at subsonic conditions. In addition, the introduction of swirl jets at all pressure ratios significantly reduces jet noise and core length in supersonic conditions, mitigating the noise created by shockwaves and leading to screech tone-free jet mixing.

Originality/value

The paper provides valuable insights into the use of coaxial swirlers for noise reduction and core length reduction in jet engines, particularly in supersonic conditions.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 30 April 2024

Jinsong Zhang, Xinlong Wang, Chen Yang, Mingkang Sun and Zhenwei Huang

This study aims to investigate the noise-inducing characteristics during the start-up process of a mixed-flow pump and the impact of different start-up schemes on pump noise.

Abstract

Purpose

This study aims to investigate the noise-inducing characteristics during the start-up process of a mixed-flow pump and the impact of different start-up schemes on pump noise.

Design/methodology/approach

This study conducted numerical simulations on the mixed-flow pump under different start-up schemes and investigated the flow characteristics and noise distribution under these schemes.

Findings

The results reveal that the dipole noise is mainly caused by pressure fluctuations, while the quadrupole noise is mainly generated by the generation, development and breakdown of vortices. Additionally, the noise evolution characteristics during the start-up process of the mixed-flow pump can be divided into the initial stage, stable growth stage, impulse stage and stable operation stage.

Originality/value

The findings of this study can provide a theoretical basis for the selection of start-up schemes for mixed-flow pumps, reducing flow noise and improving the operational stability of mixed-flow pumps.

Details

Engineering Computations, vol. 41 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 February 2024

Kiri Mealings and Joerg M. Buchholz

The purpose of this paper is to systematically map research on the effect of classroom acoustics and noise on high school students’ listening, learning and well-being, as well as…

Abstract

Purpose

The purpose of this paper is to systematically map research on the effect of classroom acoustics and noise on high school students’ listening, learning and well-being, as well as identify knowledge gaps to inform future research.

Design/methodology/approach

This scoping review followed the PRISMA-ScR protocol. A comprehensive search of four online databases (ERIC, PubMed, Scopus and Web of Science) was conducted. Peer-reviewed papers were included if they conducted a study on the effect of classroom acoustics or noise on students’ listening, learning or well-being; had a clear definition of the noise level measurement; were conducted with high school students; and had the full text in English available.

Findings

In total, 14 papers met the criteria to be included in the review. The majority of studies assessed the impact of noise on students’ listening, learning or well-being. Overall, the results showed that higher noise levels have a negative effect on students’ listening, learning and well-being. Effects were even more pronounced for students who were non-native speakers or those with special educational needs such as hearing loss. Therefore, it would be beneficial to limit unnecessary noise in the classroom as much as possible through acoustic insulation, acoustic treatment and classroom management strategies.

Originality/value

This paper is the first review paper to synthesize previous research on the effect of classroom acoustics and noise on high school students’ listening, learning and well-being. It provides an analysis of the limitations of existing literature and proposes future research to help fill in these gaps.

Details

Facilities , vol. 42 no. 5/6
Type: Research Article
ISSN: 0263-2772

Keywords

Article
Publication date: 12 January 2024

Kai Xu, Ying Xiao and Xudong Cheng

The purpose of this study is to investigate the effects of nanoadditive lubricants on the vibration and noise characteristics of helical gears compared with conventional…

Abstract

Purpose

The purpose of this study is to investigate the effects of nanoadditive lubricants on the vibration and noise characteristics of helical gears compared with conventional lubricants. The experiment aims to analyze whether nanoadditive lubricants can effectively reduce gear vibration and noise under different speeds and loads. It also analyzes the sensitivity of the vibration reduction to load and speed changes. In addition, it compares the axial and radial vibration reduction effects. The goal is to explore the application of nanolubricants for vibration damping and noise reduction in gear transmissions. The results provide a basis for further research on nanolubricant effects under high-speed conditions.

Design/methodology/approach

Helical gears of 20CrMnTi were lubricated with conventional oil and nanoadditive oils. An open helical gearbox with spray lubrication was tested under different speeds (200–500 rpm) and loads (20–100 N·m). Gear noise was measured by a sound level meter. Axial and radial vibrations were detected using an M+P VibRunner system and fast Fourier transform analysis. Vibration spectrums under conventional and nanolubrication were compared. Gear tooth surfaces were observed after testing. The experiment aimed to analyze the noise and vibration reduction effects of nanoadditive lubricants on helical gears and the sensitivity to load and speed.

Findings

The key findings are that nanoadditive lubricants significantly reduce the axial and radial vibrations of helical gears under low-speed conditions compared with conventional lubricants, with a more pronounced effect on axial vibrations. The vibration reduction is more sensitive to rotational speed than load. At the same load and speed, nanolubrication reduces noise by 2%–5% versus conventional lubrication. Nanoparticles change the friction from sliding to rolling and compensate for meshing errors, leading to smoother vibrations. The nanolubricants alter the gear tooth surfaces and optimize the microtopography. The results provide a basis for exploring nanolubricant effects under high speeds.

Originality/value

The originality and value of this work is the experimental analysis of the effects of nanoadditive lubricants on the vibration and noise characteristics of hard tooth surface helical gears, which has rarely been studied before. The comparative results under different speeds and loads provide new insights into the vibration damping capabilities of nanolubricants in gear transmissions. The findings reveal the higher sensitivity to rotational speed versus load and the differences in axial and radial vibration reduction. The exploration of nanolubricant effects on gear tribological performance and surface interactions provides a valuable reference for further research, especially under higher speed conditions closer to real applications.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2023-0220/

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 16 January 2024

Nasim Babazadeh, Jochen Teizer, Hans-Joachim Bargstädt and Jürgen Melzner

Construction activities conducted in urban areas are often a source of significant noise disturbances, which cause psychological and health issues for residents as well as…

200

Abstract

Purpose

Construction activities conducted in urban areas are often a source of significant noise disturbances, which cause psychological and health issues for residents as well as long-term auditory impairments for construction workers. The limited effectiveness of passive noise control measures due to the close proximity of the construction site to surrounding neighborhoods often results in complaints and eventually lawsuits. These can then lead to delays and cost overruns for the construction projects.

Design/methodology/approach

The paper proposes a novel approach to integrating construction noise as an additional dimension into scheduling construction works. To achieve this, a building information model, including the three-dimensional construction site layout object geometry, resource allocation and schedule information, is utilized. The developed method explores further project data that are typically available, such as the assigned equipment to a task, its precise location, and the estimated duration of noisy tasks. This results in a noise prediction model by using noise mapping techniques and suggesting less noisy alternative ways of construction. Finally, noise data obtained from sensors in a case study contribute real values for validating the proposed approach, which can be used later to suggest solutions for noise mitigation.

Findings

The results of this study indicate that the proposed approach can accurately predict construction noise given a few available parameters from digital project planning and sensors installed on a construction site. Proactively integrating construction noise control measures into the planning process has benefits for both residents and construction managers, as it reduces construction noise-related disturbances, prevents unexpected legal issues and ensures the health and well-being of the workforce.

Originality/value

While previous research has concentrated on real-time data collection using sensors, a more effective solution would also involve addressing and mitigating construction noise during the pre-construction work planning phase.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 14 August 2023

Hasim Kafali and İbrahim Güçlü

In this context, this study aims to obtain information about the noise levels emitted to the environment by modeling the noise map of Dalaman Airport and correlating these noise…

Abstract

Purpose

In this context, this study aims to obtain information about the noise levels emitted to the environment by modeling the noise map of Dalaman Airport and correlating these noise values according to the Environmental Noise Directive (END) and World Health Organization (WHO) limits.

Design/methodology/approach

Dalaman Airport Aeronautical Information Publication and 2022 flight data from the airport were analyzed. The noise levels exposed to schools and health institutions were determined using the Cnossos–Eu calculation method.

Findings

Maximum noise levels were obtained as Lden 92.29 dB(A), Lday 85.24 dB(A), Levening 89.00 dB(A) and Lnight 85.23 dB(A) according to the noise indicators. Limit values recommended by the END and WHO according to noise indicator types and measurement results were correlated and evaluated.

Originality/value

In the noise modeling of Dalaman Airport, there has previously been no evaluation of the noise limits recommended according to END or WHO in the literature.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 19 July 2024

Zican Chang, Guojun Zhang, Wenqing Zhang, Yabo Zhang, Li Jia, Zhengyu Bai and Wendong Zhang

Ciliated microelectromechanical system (MEMS) vector hydrophones pick up sound signals through Wheatstone bridge in cross beam-ciliated microstructures to achieve information…

Abstract

Purpose

Ciliated microelectromechanical system (MEMS) vector hydrophones pick up sound signals through Wheatstone bridge in cross beam-ciliated microstructures to achieve information transmission. This paper aims to overcome the complexity and variability of the marine environment and achieve accurate location of targets. In this paper, a new method for ocean noise denoising based on improved complete ensemble empirical mode decomposition with adaptive noise combined with wavelet threshold processing method (CEEMDAN-WT) is proposed.

Design/methodology/approach

Based on the CEEMDAN-WT method, the signal is decomposed into different intrinsic mode functions (IMFs), and relevant parameters are selected to obtain IMF denoised signals through WT method for the noisy mode components with low sample entropy. The final pure signal is obtained by reconstructing the unprocessed mode components and the denoising component, effectively separating the signal from the wave interference.

Findings

The three methods of empirical mode decomposition (EMD), ensemble empirical mode decomposition (EEMD) and CEEMDAN are compared and analyzed by simulation. The simulation results show that the CEEMDAN method has higher signal-to-noise ratio and smaller reconstruction error than EMD and EEMD. The feasibility and practicability of the combined denoising method are verified by indoor and outdoor experiments, and the underwater acoustic experiment data after processing are combined beams. The problem of blurry left and right sides is solved, and the high precision orientation of the target is realized.

Originality/value

This algorithm provides a theoretical basis for MEMS hydrophones to achieve accurate target positioning in the ocean, and can be applied to the hardware design of sonobuoys, which is widely used in various underwater acoustic work.

Details

Sensor Review, vol. 44 no. 5
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 4 June 2024

Areeb Ahmed and Ferit Acar Savaci

In contrast to traditional communication systems, slower data rate has always remained a weak link for non-traditional random communication systems (RCSs), which use alpha-stable…

Abstract

Purpose

In contrast to traditional communication systems, slower data rate has always remained a weak link for non-traditional random communication systems (RCSs), which use alpha-stable (a-stable) noise as a carrier. This paper aims to introduce a fast receiver for skewed a-stable noise shift keying (SkaSNSK)-based RCSs.

Design/methodology/approach

The introduced receiver is based on the sign of slant estimator (SoSE), which provides rapid estimation of the skewed a-stable random noise signals (RNSs) received from the additive white Gaussian noise channel. The SoSE-based receiver minimizes the number of samples required to extract the encoded information from the received RNSs. This is achieved by manipulating the antipodal properties of the slant/skewness parameter of the a-stable carrier. Hence, a high data rate with relatively low complexity is guaranteed.

Findings

In comparison with the previously introduced sinc, logarithmic and modified extreme value method-based receivers, the proposed SoSE-based receiver also achieves improved bit error rate (BER) along with the better covertness values so that the essence of security provided by SkaSNSK-based RCSs remains intact.

Research limitations/implications

Because of the selected range of the associated parameters of the a-stable noise as a carrier, the BER vs MSNR results are may lack applicability for the complete range of values. Therefore, further research is required to produce results in different ranges.

Practical implications

The study includes implications for the hardware development based on the proposed communication scheme.

Originality/value

It can be seen that the paper fulfils the desired need of a fast receiver design for RCS.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of over 2000