Search results

1 – 10 of 73
Content available
Article
Publication date: 1 October 2002

64

Abstract

Details

Industrial Lubrication and Tribology, vol. 54 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Content available
Article
Publication date: 10 May 2013

John Ling

170

Abstract

Details

Circuit World, vol. 39 no. 2
Type: Research Article
ISSN: 0305-6120

Content available
Article
Publication date: 1 August 2000

Nihal Sinnadurai

101

Abstract

Details

Microelectronics International, vol. 17 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Open Access
Article
Publication date: 27 April 2020

Mojtaba Izadi, Aidin Farzaneh, Mazher Mohammed, Ian Gibson and Bernard Rolfe

This paper aims to present a comprehensive review of the laser engineered net shaping (LENS) process in an attempt to provide the reader with a deep understanding of the…

11472

Abstract

Purpose

This paper aims to present a comprehensive review of the laser engineered net shaping (LENS) process in an attempt to provide the reader with a deep understanding of the controllable and fixed build parameters of metallic parts. The authors discuss the effect and interplay between process parameters, including: laser power, scan speed and powder feed rate. Further, the authors show the interplay between process parameters is pivotal in achieving the desired microstructure, macrostructure, geometrical accuracy and mechanical properties.

Design/methodology/approach

In this manuscript, the authors review current research examining the process inputs and their influences on the final product when manufacturing with the LENS process. The authors also discuss how these parameters relate to important build aspects such as melt-pool dimensions, the volume of porosity and geometry accuracy.

Findings

The authors conclude that studies have greatly enriched the understanding of the LENS build process, however, much studies remains to be done. Importantly, the authors reveal that to date there are a number of detailed theoretical models that predict the end properties of deposition, however, much more study is necessary to allow for reasonable prediction of the build process for standard industrial parts, based on the synchronistic behavior of the input parameters.

Originality/value

This paper intends to raise questions about the possible research areas that could potentially promote the effectiveness of this LENS technology.

Details

Rapid Prototyping Journal, vol. 26 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Content available
Article
Publication date: 23 September 2021

Jianing Wang, Jieshi Chen, Zhiyuan Zhang, Peilei Zhang, Zhishui Yu and Shuye Zhang

The purpose of this article is the effect of doping minor Ni on the microstructure evolution of a Sn-xNi (x = 0, 0.05 and 0.1 wt.%)/Ni (Poly-crystal/Single-crystal abbreviated as…

Abstract

Purpose

The purpose of this article is the effect of doping minor Ni on the microstructure evolution of a Sn-xNi (x = 0, 0.05 and 0.1 wt.%)/Ni (Poly-crystal/Single-crystal abbreviated as PC Ni/SC Ni) solder joint during reflow and aging treatment. Results showed that the intermetallic compounds (IMCs) of the interfacial layer of Sn-xNi/PC Ni joints were Ni3Sn4 phase, while the IMCs of Sn-xNi/SC Ni joints were NiSn4 phase. After the reflow process and thermal aging of different joints, the growth behavior of interfacial layer was different due to the different mechanism of element diffusion of the two substrates. The PC Ni substrate mainly provided Ni atoms through grain boundary diffusion. The Ni3Sn4 phase of the Sn0.05Ni/PC Ni joint was finer, and the diffusion flux of Sn and Ni elements increased, so the Ni3Sn4 layer of this joint was the thickest. The SC Ni substrate mainly provided Ni atoms through the lattice diffusion. The Sn0.1Ni/SC Ni joint increases the number of Ni atoms at the interface due to the doping of 0.1Ni (wt.%) elements, so the joint had the thickest NiSn4 layer.

Design/methodology/approach

The effects of doping minor Ni on the microstructure evolution of an Sn-xNi (x = 0, 0.05 and 0.1 Wt.%)/Ni (Poly-crystal/Single-crystal abbreviated as PC Ni/SC Ni) solder joint during reflow and aging treatment was investigated in this study.

Findings

Results showed that the intermetallic compounds (IMCs) of the interfacial layer of Sn-xNi/PC Ni joints were Ni3Sn4 phase, while the IMCs of Sn-xNi/SC Ni joints were NiSn4 phase. After the reflow process and thermal aging of different joints, the growth behavior of the interfacial layer was different due to the different mechanisms of element diffusion of the two substrates.

Originality/value

In this study, the effect of doping Ni on the growth and formation mechanism of IMCs of the Sn-xNi/Ni (single-crystal) solder joints (x = 0, 0.05 and 0.1 Wt.%) was investigated.

Details

Soldering & Surface Mount Technology, vol. 34 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Open Access
Article
Publication date: 10 July 2021

Emmanuel Ndzibah, Giovanna Andrea Pinilla-De La Cruz and Ahm Shamsuzzoha

The purpose of this paper is to propose a conceptual framework for handling end of life (henceforth EoL) scenarios of solar photovoltaic (solar PV) panels, which includes…

4851

Abstract

Purpose

The purpose of this paper is to propose a conceptual framework for handling end of life (henceforth EoL) scenarios of solar photovoltaic (solar PV) panels, which includes different options available to businesses and end-users, as well as promoting the collaboration between government and all relevant stakeholders.

Design/methodology/approach

This paper adopts purposeful sampling, secondary data and content analysis to develop an appropriate conceptual framework that helps to create awareness of the appropriate options for dealing with the EoL cases of solar PV panels.

Findings

From the data analysis, it is revealed that reuse, repair and recycling of solar PV panels can ensure value creation, public-private partnership and a solution for education in sustainability, and thus, prolonging the useful life cycle of the products.

Research limitations/implications

This paper limits the analysis on developing economies and the use of selected literature based on the recycling of solar PV panels.

Originality/value

This paper is an initial attempt to create an awareness by identifying, analyzing and educating the stakeholders to handle appropriately any EoL scenario of solar PV panels.

Content available
Article
Publication date: 22 May 2007

J.H. Ling

265

Abstract

Details

Circuit World, vol. 33 no. 2
Type: Research Article
ISSN: 0305-6120

Content available
Article
Publication date: 11 September 2009

74

Abstract

Details

Anti-Corrosion Methods and Materials, vol. 56 no. 5
Type: Research Article
ISSN: 0003-5599

Content available
Article
Publication date: 1 August 1999

David Margaroni

165

Abstract

Details

Industrial Lubrication and Tribology, vol. 51 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Content available
Article
Publication date: 21 August 2009

53

Abstract

Details

Circuit World, vol. 35 no. 3
Type: Research Article
ISSN: 0305-6120

1 – 10 of 73