Search results

1 – 10 of 27
Article
Publication date: 20 June 2016

Jin Sun

The purpose of this paper is to describe a visual try-in evaluation framework for the template-guided modelling of a nasal prosthesis.

Abstract

Purpose

The purpose of this paper is to describe a visual try-in evaluation framework for the template-guided modelling of a nasal prosthesis.

Design/methodology/approach

For patients with nasal defects, there is no self-information that can be used for the fabrication of the nasal prosthesis. Based on model retrieval from a database, the template-guided model construction method can ensure successful building of the nasal prosthesis. The deviation measurement between the two mid-planes of pre-operative and visual post-operative patient’s face allowed a virtual try-in approach in the symmetry evaluation of the prosthetic rehabilitation. The test of fit between the prosthesis model and the surrounding tissue data also provided an evaluation of whether the nasal prosthesis fit the patient’s appearance well before operation.

Findings

A case study confirmed that this visual try-in evaluation framework has potential to design the desired nasal prosthesis for daily clinical practice.

Practical implications

This technique facilitates modelling of nasal prostheses while helping to predict the effect before the prosthesis is manufactured.

Originality/value

This visual try-in evaluation framework has great potential for use in clinical applications because of its advantages on the aesthetic evaluation of the prosthetic rehabilitation.

Details

Rapid Prototyping Journal, vol. 22 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 March 2013

Jin Sun, Xiaobo Chen, Haihong Liao and Juntong Xi

The purpose of this paper is to propose a template‐based framework for nasal prosthesis fabrication using a 3D areal scanner and a CT scanner.

Abstract

Purpose

The purpose of this paper is to propose a template‐based framework for nasal prosthesis fabrication using a 3D areal scanner and a CT scanner.

Design/methodology/approach

Use of a self‐designed 3D areal scanner enables acquisition of accurate data describing the patient's face. Patients with nasal defects have no organization for reference, but the template‐based model construction method can ensure successful building of the outer surface of the nasal prosthesis. Since the areal scanner has some difficulties acquiring data for concave areas, preoperative CT data are used to provide concave information, enabling construction of the inner surface for the nasal prosthesis. The combined inner and outer surfaces are used to generate the completed nasal prosthesis.

Findings

The results showed that the nasal prosthesis fits the patient's appearance well. Clinical applications confirmed that this framework is attractive and has the potential desired nasal prosthesis in daily clinical practice.

Practical implications

The results of this study improve the fabrication accuracy of nasal prostheses. The construction and development technique employs a nasal digital library, 3D areal scanning data and CT scanning data. This technique facilitates fabrication of precise nasal prostheses while helping the patients predict the effect before the prosthesis is manufactured.

Originality/value

This template‐based framework has strong potential for clinical applications because of its advantages over other methods in terms of accuracy, speed, safety, and cost.

Details

Rapid Prototyping Journal, vol. 19 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 14 June 2011

Jin Sun, Juntong Xi, Xiaobo Chen and Yaoyang Xiong

The purpose of this paper is to describe a computer‐aided design/manufacturing (CAD/CAM) system for fabricating facial prostheses.

1133

Abstract

Purpose

The purpose of this paper is to describe a computer‐aided design/manufacturing (CAD/CAM) system for fabricating facial prostheses.

Design/methodology/approach

The CAD/CAM system can be used for fabricating custom‐made facial prostheses with symmetrical or asymmetrical features. This system integrates non‐contact structured light scanning, reverse engineering and rapid prototyping manufacturing technology. Fringe projection based on the combination of the phase‐shift and grey‐code methods is used for data collection. A robust approach is proposed to calculate the mid‐plane of the human face without any knowledge of the centroid position or the principal axis in data processing.

Findings

Results show that the proposed method increases the fabrication accuracy and reduces the operating time. Patients were satisfied with the rehabilitation results as the custom‐made facial prostheses fitted them well.

Practical implications

This study improves the fabrication accuracy of facial prostheses. Three‐dimensional data of the facial surface of a patient needing a facial prosthesis were obtained with almost no harm to his body; after a series of robust processes, a precise and suitable aesthetic facial prosthesis was fabricated.

Originality/value

This system has bright prospects for clinical application because of its advantages over other methods in terms of speed, accuracy, safety, cost, etc.

Details

Rapid Prototyping Journal, vol. 17 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 9 March 2010

Richard Bibb, Dominic Eggbeer and Peter Evans

Maxillofacial prosthetics is faced with increasing patient numbers and cost constraints leading to the need to explore whether computer‐aided techniques can increase efficiency…

1756

Abstract

Purpose

Maxillofacial prosthetics is faced with increasing patient numbers and cost constraints leading to the need to explore whether computer‐aided techniques can increase efficiency. This need is addressed through a four‐year research project that identified quality, economic, technological and clinical implications of the application of digital technologies in maxillofacial prosthetics. The purpose of this paper is to address the aspects of this research that related to the application of rapid prototyping (RP).

Design/methodology/approach

An action research approach is taken, utilising multiple case studies to evaluate the current capabilities of digital technologies in the preparation, design and manufacture of maxillofacial prostheses.

Findings

The research indicates where RP has demonstrated potential clinical application and where further technical developments are required. The paper provides a technical specification towards which RP manufacturers can direct developments that would meet the needs of maxillofacial prosthetists.

Originality/value

Whilst research studies have explored digital technologies in maxillofacial prosthetics, they have relied on individual studies applying a single RP technology to one particular aspect of a prosthesis. Consequently, conclusions on the wider implications have not been possible. This research explored the application of digital technologies to every aspect of the design and manufacture of a series of maxillofacial prostheses. Unlike previous research, the cases described here addressed the application of RP to the direct manufacture of substructures, retention components and texture. This research analyses prosthetic requirements to ascertain target technical specifications towards which RP processes should be developed.

Details

Rapid Prototyping Journal, vol. 16 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 13 October 2022

Smitkumar Savsani, Shamsher Singh and Harlal Singh Mali

Medical devices are undergoing rapid changes because of the increasing affordability of advanced technologies like additive manufacturing (AM) and three-dimensional scanning. New…

Abstract

Purpose

Medical devices are undergoing rapid changes because of the increasing affordability of advanced technologies like additive manufacturing (AM) and three-dimensional scanning. New avenues are available for providing solutions and comfort that were not previously conceivable. The purpose of this paper is to provide a comprehensive review of the research on developing prostheses using AM to understand the opportunities and challenges in the domain. Various studies on prosthesis development using AM are investigated to explore the scope of integration of AM in prostheses development.

Design/methodology/approach

A review of key publications from the past two decades was conducted. Integration of AM and prostheses development is reviewed from the technologies, materials and functionality point of view to identify challenges, opportunities and future scope.

Findings

AM in prostheses provides superior physical and cognitive ergonomics and reduced cost and delivery time. Patient-specific, lightweight solutions for complex designs improve comfort, functionality and clinical outcomes. Compared to existing procedures and methodologies, using AM technologies in prosthetics could benefit a large population.

Originality/value

This paper helps investigate the impact of AM and related technology in the field of prosthetics and can also be viewed as a collection of relevant medical research and findings.

Details

Rapid Prototyping Journal, vol. 29 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 19 April 2013

Jin Sun, Yaoyang Xiong, Xiaobo Chen and Juntong Xi

The purpose of this paper is to propose an imperfect symmetry transform framework for orbital prosthesis modelling.

Abstract

Purpose

The purpose of this paper is to propose an imperfect symmetry transform framework for orbital prosthesis modelling.

Design/methodology/approach

Current models of patients with orbital defects have imperfect symmetries. Commonly used methods, such as principal component analysis (PCA) or iterative closest points algorithm (ICP), do not detect perfect symmetries and therefore produce poor results. The authors propose an improved ICP algorithm based on the M‐estimator, which can remove outliers from the optimization and detect incorrect symmetry. Using this algorithm, the mid‐facial plane of a patient's facial model can be precisely obtained despite perturbation of the facial shape due to the defect.

Findings

The results showed that the orbital prosthesis fitted well to the patient's appearance. Clinical applications confirmed that this framework is attractive and has the potential for use in creating desired orbital prostheses or other bilateral maxillofacial prostheses in daily clinical practice.

Practical implications

The method described in this report will improve the fabrication accuracy of orbital prostheses or other bilateral maxillofacial prostheses.

Originality/value

This imperfect symmetry transform framework has great potential for use in clinical applications because of its advantages over other existing methods in terms of accuracy.

Article
Publication date: 5 May 2022

Omar Alageel

Three-dimensional (3D) printing technologies have gained attention in dentistry because of their ability to print objects with complex geometries with high precision and accuracy…

Abstract

Purpose

Three-dimensional (3D) printing technologies have gained attention in dentistry because of their ability to print objects with complex geometries with high precision and accuracy, as well as the benefits of saving materials and treatment time. This study aims to explain the principles of the main 3D printing technologies used for manufacturing dental prostheses and devices, with details of their manufacturing processes and characteristics. This review presents an overview of available 3D printing technologies and materials for dental prostheses and devices.

Design/methodology/approach

This review was targeted to include publications pertaining to the fabrication of dental prostheses and devices by 3D printing technologies between 2012 and 2021. A literature search was carried out using the Web of Science, PubMed, Google Scholar search engines, as well as the use of a manual search.

Findings

3D printing technologies have been used for manufacturing dental prostheses and devices using a wide range of materials, including polymers, metals and ceramics. 3D printing technologies have demonstrated promising experimental outcomes for the fabrication of dental prostheses and devices. However, further developments in the materials for fixed dental prostheses are required.

Originality/value

3D printing technologies are effective and commercially available for the manufacturing of polymeric and metallic dental prostheses. Although the printing of dental ceramics and composites for dental prostheses is promising, further improvements are required.

Details

Rapid Prototyping Journal, vol. 28 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 April 2005

S. Singare, L. Dichen, L. Bingheng, G. Zhenyu and L. Yaxiong

To develop a computer‐assisted prefabricated implant design and manufacturing system to improve the esthetic outcome in chin surgery.

2509

Abstract

Purpose

To develop a computer‐assisted prefabricated implant design and manufacturing system to improve the esthetic outcome in chin surgery.

Design/methodology/approach

Design methods for medical rapid prototyping (RP) of custom‐fabricated chin augmentation implant are presented in this paper. After a careful preoperative planning based on cephalometric tracing for esthetic assessment, helical computed tomography data were used to create a three‐dimensional model of the deficient mandible. Based on these data, the inner surface of the prosthesis was designed to fit the bone surface exactly. The outer geometry was generated from a dried human mandible to create anatomically correct shape prosthesis. The inner and outer surfaces were then connected, and a solid model resulted. A RP system was used for production of the physical models. The surgical planning was performed using the implants and skull models. The resulting SLA implant is used for the production of a mold, which is used to cast the titanium part. Three patients with a congenital small chin or a small and asymmetric mandible underwent reconstruction with individual prefabricated implant. Mean follow‐up period was 1.5 years.

Findings

This approach showed significant results in chin augmentation. Compared with traditional methods, the intra‐operative fit was excellent. The operating time was reduced. Postoperatively, the patients experienced the restoration of a natural chin contour, so the esthetic outcome was pleasing. Over the mean follow‐up period of 1.5 years, there were no complications and no implant had to be removed. Long‐term excellent esthetic outcomes by using this new technique have recently been reported.

Research limitations/implications

The methods described above suffer from certain limitations. The registration of the mandible template to create the augmentation image requires high skills of the designer. In addition, the use of RP model in preoperative preparation is expensive.

Practical implications

This method not only demonstrates the significant progress in the reconstruction of chin defects using CAD/CAM RP and RT, compared with the conventional methods of chin augmentation surgery, but also provides natural geometrical prosthesis contour design and accurate fabrication and precise fitting of the prosthesis. The advantages of using this technique are that the physical model of the implant is fitted on the skull model so that the surgeon can plan and rehearse the surgery in advance and a less invasive surgical procedure and less time‐consuming reconstructive and an adequate esthetic can result.

Originality/value

This clinical case demonstrated the potential value of CAD/CAM and RP‐based custom fitted and anatomically correct shape prosthesis fabrication and presurgical planning in craniofacial surgery.

Details

Rapid Prototyping Journal, vol. 11 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 18 January 2016

Steffan Daniel and Dominic Eggbeer

This paper aims to present novel techniques for designing maxillofacial prostheses using computer-aided design (CAD) and additive manufacture (AM), focusing on the integration of…

Abstract

Purpose

This paper aims to present novel techniques for designing maxillofacial prostheses using computer-aided design (CAD) and additive manufacture (AM), focusing on the integration of osseointegrated retention components. A fully computer-aided approach is considered as a major step towards reducing patient consultation time and an efficient workflow.

Design/methodology/approach

The workflow was illustrated through a phantom model. 3D laser scanning was used to capture the phantom anatomy and pre-fabricated geometric features, which enabled the implant positions to be precisely reverse engineered in the data. A novel CAD workflow was used to design the retention mechanisms and a mould. The individual components were fabricated using AM. A definitive silicone prosthesis that incorporated a bar/clip retention mechanism was then fabricated.

Findings

The research demonstrated that retention components can be integrated into prostheses using appropriate CAD and AM technologies.

Originality/value

This study demonstrates the feasibility of a computer-aided workflow for designing facial prostheses that incorporate osseointegrated retention mechanisms. Novel techniques were developed to: digitise abutment details using custom scanning locators; design retention components; manufacture retention components using AM; integrate retention components into a CAD and AM prosthesis mould. This overcomes limitations identified in previously published cases and demonstrated significant potential to reduce patient consultation time and create a clinically viable process.

Details

Rapid Prototyping Journal, vol. 22 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 28 August 2024

Ida Papallo, Domenico Solari, Ilaria Onofrio, Lorenzo Ugga, Renato Cuocolo, Massimo Martorelli, Teresa Russo, Ilaria Bove, Luigi Maria Cavallo and Antonio Gloria

This study aims to integrate design methods and additive manufacturing with the use of a thermoplastic elastomer certified for medical use and reverse engineering towards a new…

Abstract

Purpose

This study aims to integrate design methods and additive manufacturing with the use of a thermoplastic elastomer certified for medical use and reverse engineering towards a new concept of a customized buttress model with optimized features for the reconstruction of the osteo-dural opening after endoscopic endonasal transtuberculum-transplanum approach.

Design/methodology/approach

Additive manufacturing allows making of cost-effective and useable devices with tailored properties for biomedical applications. The endoscopic endonasal approach to the suprasellar area enables the management of different intradural tumours, and the craniectomy at the skull base is generally wide and irregular. Defining an optimal strategy for osteodural defect closure at the preoperative stage represents a significant challenge.

Findings

Using the results obtained from a computed tomography analysis, skull base defects were designed to plan the surgical approach. Several concepts of customized buttress models were first built up, initially focusing on thin, flexible edges characterized by different thicknesses. Finite element analyses and design optimization allowed us to achieve the optimal design solution with improved compliance/flexibility for easy intranasal manoeuvrability, maintaining an adequate mechanical stability. As the thickness of the edges decreased, an increase of strain energy values was found (i.e. 1.2 mJ – Model A, 1.7 mJ – Model B, 2.3 mJ – Model C, 4.3 mJ – Model D). However, a further optimization (Model E) led to a significant increase of the compliance (strain energy of 14.1 mJ).

Originality/value

The results obtained from clinical evaluations demonstrated the feasibility of the proposed technical solutions, improving surgery effectiveness.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 27