Search results

1 – 9 of 9
Open Access
Article
Publication date: 6 May 2022

Mohammed Ayoub Ledhem

The purpose of this paper is to predict the daily accuracy improvement for the Jakarta Islamic Index (JKII) prices using deep learning (DL) with small and big data of symmetric…

1378

Abstract

Purpose

The purpose of this paper is to predict the daily accuracy improvement for the Jakarta Islamic Index (JKII) prices using deep learning (DL) with small and big data of symmetric volatility information.

Design/methodology/approach

This paper uses the nonlinear autoregressive exogenous (NARX) neural network as the optimal DL approach for predicting daily accuracy improvement through small and big data of symmetric volatility information of the JKII based on the criteria of the highest accuracy score of testing and training. To train the neural network, this paper employs the three DL techniques, namely Levenberg–Marquardt (LM), Bayesian regularization (BR) and scaled conjugate gradient (SCG).

Findings

The experimental results show that the optimal DL technique for predicting daily accuracy improvement of the JKII prices is the LM training algorithm based on using small data which provide superior prediction accuracy to big data of symmetric volatility information. The LM technique develops the optimal network solution for the prediction process with 24 neurons in the hidden layer across a delay parameter equal to 20, which affords the best predicting accuracy based on the criteria of mean squared error (MSE) and correlation coefficient.

Practical implications

This research would fill a literature gap by offering new operative techniques of DL to predict daily accuracy improvement and reduce the trading risk for the JKII prices based on symmetric volatility information.

Originality/value

This research is the first that predicts the daily accuracy improvement for JKII prices using DL with symmetric volatility information.

Details

Journal of Capital Markets Studies, vol. 6 no. 2
Type: Research Article
ISSN: 2514-4774

Keywords

Content available
Book part
Publication date: 21 November 2018

Abstract

Details

Improving Flood Management, Prediction and Monitoring
Type: Book
ISBN: 978-1-78756-552-4

Open Access
Article
Publication date: 4 May 2020

Dharyll Prince Mariscal Abellana, Donna Marie Canizares Rivero, Ma. Elena Aparente and Aries Rivero

This paper aims to propose a hybrid-forecasting model for long-term tourism demand forecasting. As such, it attempts to model the tourism demand in the Philippines, which is a…

3488

Abstract

Purpose

This paper aims to propose a hybrid-forecasting model for long-term tourism demand forecasting. As such, it attempts to model the tourism demand in the Philippines, which is a relatively underrepresented area in the literature, despite its tourism sector’s growing economic progress.

Design/methodology/approach

A hybrid support vector regression (SVR) – seasonal autoregressive integrated moving averages (SARIMA) model is proposed to model the seasonal, linear and nonlinear components of the tourism demand in a destination country. The paper further proposes the use of multiple criteria decision-making (MCDM) approaches in selecting the best forecasting model among a set of considered models. As such, a preference ranking organization method for enrichment of evaluations (PROMETHEE) II is used to rank the considered forecasting models.

Findings

The proposed hybrid SVR-SARIMA model is the best performing model among a set of considered models in this paper using performance criteria that evaluate the errors of magnitude, directionality and trend change, of a forecasting model. Moreover, the use of the MCDM approach is found to be a relevant and prospective approach in selecting the best forecasting model among a set of models.

Originality/value

The novelty of this paper lies in several aspects. First, this paper pioneers the demonstration of the SVR-SARIMA model’s capability in forecasting long-term tourism demand. Second, this paper is the first to have proposed and demonstrated the use of an MCDM approach for performing model selection in forecasting. Finally, this paper is one of the very few papers to provide lenses on the current status of Philippine tourism demand.

Details

Journal of Tourism Futures, vol. 7 no. 1
Type: Research Article
ISSN: 2055-5911

Keywords

Content available

Abstract

Details

Data Technologies and Applications, vol. 54 no. 1
Type: Research Article
ISSN: 2514-9288

Open Access
Article
Publication date: 16 August 2021

Bo Qiu and Wei Fan

Metropolitan areas suffer from frequent road traffic congestion not only during peak hours but also during off-peak periods. Different machine learning methods have been used in…

Abstract

Purpose

Metropolitan areas suffer from frequent road traffic congestion not only during peak hours but also during off-peak periods. Different machine learning methods have been used in travel time prediction, however, such machine learning methods practically face the problem of overfitting. Tree-based ensembles have been applied in various prediction fields, and such approaches usually produce high prediction accuracy by aggregating and averaging individual decision trees. The inherent advantages of these approaches not only get better prediction results but also have a good bias-variance trade-off which can help to avoid overfitting. However, the reality is that the application of tree-based integration algorithms in traffic prediction is still limited. This study aims to improve the accuracy and interpretability of the models by using random forest (RF) to analyze and model the travel time on freeways.

Design/methodology/approach

As the traffic conditions often greatly change, the prediction results are often unsatisfactory. To improve the accuracy of short-term travel time prediction in the freeway network, a practically feasible and computationally efficient RF prediction method for real-world freeways by using probe traffic data was generated. In addition, the variables’ relative importance was ranked, which provides an investigation platform to gain a better understanding of how different contributing factors might affect travel time on freeways.

Findings

The parameters of the RF model were estimated by using the training sample set. After the parameter tuning process was completed, the proposed RF model was developed. The features’ relative importance showed that the variables (travel time 15 min before) and time of day (TOD) contribute the most to the predicted travel time result. The model performance was also evaluated and compared against the extreme gradient boosting method and the results indicated that the RF always produces more accurate travel time predictions.

Originality/value

This research developed an RF method to predict the freeway travel time by using the probe vehicle-based traffic data and weather data. Detailed information about the input variables and data pre-processing were presented. To measure the effectiveness of proposed travel time prediction algorithms, the mean absolute percentage errors were computed for different observation segments combined with different prediction horizons ranging from 15 to 60 min.

Details

Smart and Resilient Transportation, vol. 3 no. 2
Type: Research Article
ISSN: 2632-0487

Keywords

Open Access
Article
Publication date: 8 December 2023

Armin Mahmoodi, Leila Hashemi, Amin Mahmoodi, Benyamin Mahmoodi and Milad Jasemi

The proposed model has been aimed to predict stock market signals by designing an accurate model. In this sense, the stock market is analysed by the technical analysis of Japanese…

Abstract

Purpose

The proposed model has been aimed to predict stock market signals by designing an accurate model. In this sense, the stock market is analysed by the technical analysis of Japanese Candlestick, which is combined by the following meta heuristic algorithms: support vector machine (SVM), meta-heuristic algorithms, particle swarm optimization (PSO), imperialist competition algorithm (ICA) and genetic algorithm (GA).

Design/methodology/approach

In addition, among the developed algorithms, the most effective one is chosen to determine probable sell and buy signals. Moreover, the authors have proposed comparative results to validate the designed model in this study with the same basic models of three articles in the past. Hence, PSO is used as a classification method to search the solution space absolutelyand with the high speed of running. In terms of the second model, SVM and ICA are examined by the time. Where the ICA is an improver for the SVM parameters. Finally, in the third model, SVM and GA are studied, where GA acts as optimizer and feature selection agent.

Findings

Results have been indicated that, the prediction accuracy of all new models are high for only six days, however, with respect to the confusion matrixes results, it is understood that the SVM-GA and SVM-ICA models have correctly predicted more sell signals, and the SCM-PSO model has correctly predicted more buy signals. However, SVM-ICA has shown better performance than other models considering executing the implemented models.

Research limitations/implications

In this study, the authors to analyze the data the long length of time between the years 2013–2021, makes the input data analysis challenging. They must be changed with respect to the conditions.

Originality/value

In this study, two methods have been developed in a candlestick model, they are raw based and signal-based approaches which the hit rate is determined by the percentage of correct evaluations of the stock market for a 16-day period.

Details

Journal of Capital Markets Studies, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-4774

Keywords

Open Access
Article
Publication date: 23 August 2022

Armin Mahmoodi, Leila Hashemi, Milad Jasemi, Jeremy Laliberté, Richard C. Millar and Hamed Noshadi

In this research, the main purpose is to use a suitable structure to predict the trading signals of the stock market with high accuracy. For this purpose, two models for the…

1017

Abstract

Purpose

In this research, the main purpose is to use a suitable structure to predict the trading signals of the stock market with high accuracy. For this purpose, two models for the analysis of technical adaptation were used in this study.

Design/methodology/approach

It can be seen that support vector machine (SVM) is used with particle swarm optimization (PSO) where PSO is used as a fast and accurate classification to search the problem-solving space and finally the results are compared with the neural network performance.

Findings

Based on the result, the authors can say that both new models are trustworthy in 6 days, however, SVM-PSO is better than basic research. The hit rate of SVM-PSO is 77.5%, but the hit rate of neural networks (basic research) is 74.2.

Originality/value

In this research, two approaches (raw-based and signal-based) have been developed to generate input data for the model: raw-based and signal-based. For comparison, the hit rate is considered the percentage of correct predictions for 16 days.

Details

Asian Journal of Economics and Banking, vol. 7 no. 1
Type: Research Article
ISSN: 2615-9821

Keywords

Open Access
Article
Publication date: 16 July 2021

Md Ozair Arshad, Shahbaz Khan, Abid Haleem, Hannan Mansoor, Md Osaid Arshad and Md Ekrama Arshad

Covid-19 pandemic is a unique and extraordinary situation for the globe, which has potentially disrupted almost all aspects of life. In this global crisis, the tourism and…

18381

Abstract

Purpose

Covid-19 pandemic is a unique and extraordinary situation for the globe, which has potentially disrupted almost all aspects of life. In this global crisis, the tourism and hospitality sector has collapsed in almost all parts of the world, and the same is true for India. Therefore, this paper aims to investigate the impact of Covid-19 on the Indian tourism industry.

Design/methodology/approach

This study develops an appropriate model to forecast the expected loss of foreign tourist arrivals (FTAs) in India for 10 months. Since the FTAs follow a seasonal trend, seasonal autoregressive integrated moving average (SARIMA) method has been employed to forecast the expected FTAs in India from March 2020 to December 2020. The results of the proposed model are then compared with the ones obtained by Holt-Winter's (H-W) model to check the robustness of the proposed model.

Findings

The SARIMA model seeks to manifest the monthly arrival of foreign tourists and also elaborates on the progressing expected loss of foreign tourists arrive for the next three quarters is approximately 2 million, 2.3 million and 3.2 million, respectively. Thus, in the next three quarters, there will be an enormous downfall of FTAs, and there is a need to adopt appropriate measures. The comparison demonstrates that SARIMA is a better model than H-W model.

Originality/value

Several studies have been reported on pandemic-affected tourism sectors using different techniques. The earlier pandemic outbreak was controlled and region-specific, but the Covid-19 eruption is a global threat having potential ramifications and strong spreading power. This work is one of the first attempts to study and analyse the impact of Covid-19 on FTAs in India.

Details

Journal of Tourism Futures, vol. 9 no. 1
Type: Research Article
ISSN: 2055-5911

Keywords

Open Access
Article
Publication date: 4 April 2023

Xiaojie Xu and Yun Zhang

Forecasts of commodity prices are vital issues to market participants and policy makers. Those of corn are of no exception, considering its strategic importance. In the present…

1038

Abstract

Purpose

Forecasts of commodity prices are vital issues to market participants and policy makers. Those of corn are of no exception, considering its strategic importance. In the present study, the authors assess the forecast problem for the weekly wholesale price index of yellow corn in China during January 1, 2010–January 10, 2020 period.

Design/methodology/approach

The authors employ the nonlinear auto-regressive neural network as the forecast tool and evaluate forecast performance of different model settings over algorithms, delays, hidden neurons and data splitting ratios in arriving at the final model.

Findings

The final model is relatively simple and leads to accurate and stable results. Particularly, it generates relative root mean square errors of 1.05%, 1.08% and 1.03% for training, validation and testing, respectively.

Originality/value

Through the analysis, the study shows usefulness of the neural network technique for commodity price forecasts. The results might serve as technical forecasts on a standalone basis or be combined with other fundamental forecasts for perspectives of price trends and corresponding policy analysis.

Details

EconomiA, vol. 24 no. 1
Type: Research Article
ISSN: 1517-7580

Keywords

Access

Only content I have access to

Year

Content type

1 – 9 of 9