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Abstract
Purpose – Metropolitan areas suffer from frequent road traffic congestion not only during peak hours but
also during off-peak periods. Different machine learning methods have been used in travel time prediction,
however, such machine learning methods practically face the problem of overfitting. Tree-based ensembles
have been applied in various prediction fields, and such approaches usually produce high prediction accuracy
by aggregating and averaging individual decision trees. The inherent advantages of these approaches not
only get better prediction results but also have a good bias-variance trade-off which can help to avoid
overfitting. However, the reality is that the application of tree-based integration algorithms in traffic
prediction is still limited. This study aims to improve the accuracy and interpretability of the models by using
random forest (RF) to analyze andmodel the travel time on freeways.
Design/methodology/approach – As the traffic conditions often greatly change, the prediction results
are often unsatisfactory. To improve the accuracy of short-term travel time prediction in the freeway network,
a practically feasible and computationally efficient RF prediction method for real-world freeways by using
probe traffic data was generated. In addition, the variables’ relative importance was ranked, which provides
an investigation platform to gain a better understanding of how different contributing factors might affect
travel time on freeways.
Findings – The parameters of the RF model were estimated by using the training sample set. After the
parameter tuning process was completed, the proposed RF model was developed. The features’ relative
importance showed that the variables (travel time 15min before) and time of day (TOD) contribute the most to
the predicted travel time result. The model performance was also evaluated and compared against the
extreme gradient boosting method and the results indicated that the RF always produces more accurate travel
time predictions.
Originality/value – This research developed an RFmethod to predict the freeway travel time by using the
probe vehicle-based traffic data and weather data. Detailed information about the input variables and data
pre-processing were presented. To measure the effectiveness of proposed travel time prediction algorithms,
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the mean absolute percentage errors were computed for different observation segments combined with
different prediction horizons ranging from 15 to 60min.

Keywords Big data, Machine learning, RF, Travel time prediction, Probe vehicle data

Paper type Research paper

1. Introduction
Nowadays, travel time prediction plays a significant role as it can greatly help route
planning and also the development of countermeasures to reduce traffic congestion.
Metropolitan areas are adversely affected by frequent road traffic congestion not only in
peak hours but also in off-peak periods. Therefore, the capability to forecast traffic
conditions, particularly travel times, is of utmost importance in traffic management
applications aimed at relieving negative social, environmental and economic impacts for
people. The definition of travel time is the total time for a vehicle to travel from one point to
another over a specified route (Zhu et al., 2009). Travel time has been widely used to measure
the effectiveness of transportation systems and increasingly becomes one of the most
popular traffic information that travelers are interested in gathering. The ability to
accurately predict travel time in transportation networks is a critical component of the
traveler information system. Accurate travel time prediction can enhance the performance of
the traffic management systems, in which travelers are given the opportunities to react to
the traffic proactively (Oh et al., 2015). Furthermore, as an important performance indicator,
accurate predicted travel times can be used for quantitatively comparing different traffic
management systems. Nowadays, with the explosive availability of abundant data collected
by sensors and monitors, the big data storage and processing issues have become more and
more relevant (Šemanjski, 2015).

In travel time prediction, a reliable prediction method needs to achieve the following
three objectives: accuracy, robustness and adaptability (Van Lint, 2006). Traditional data-
based (e.g. linear regression and time series) models have been widely applied to predict
travel times based on the historical data. However, with the consideration of effectiveness,
accuracy and feasibility, these models may have become outdated and replaceable. Recently,
different machine approaches (such as neural networks, ensemble learning and support
vector machines) have been used by different researchers and the results indicate that such
approaches to prediction are adaptable and can give better performances than traditional
models. Therefore, the machine learning-based approaches are selected for the travel time
prediction in this study. The purpose of this study is to propose an approach to
systematically analyze the relationship between travel time and various traffic features. In
that regard, a machine learning-based approach (e.g. the random forest [RF] model) is used
to predict the freeway travel time. The proposed approach is also tested using a freeway
corridor in Charlotte, North Carolina using the probe vehicle-based traffic data. The
advantages and disadvantages of the proposed model are also identified and compared.
Finally, the effectiveness and efficiency of the proposedmodel are also evaluated.

2. Literature review
Transportation researchers and data scientists have developed various techniques in the
past three decades to provide more reliable future travel time estimation methods (Oh et al.,
2015). Generally speaking, such techniques can be classified into three groups: naive
methods, traffic theory-based methods and data-driven methods. As the name indicates,
the naive prediction models are very simple methods, which typically do not involve the
estimation of model parameters. As the model assumptions are usually restrictive, they are
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not actually fulfilled in many situations (Wunderlich et al., 2000). As one of the traffic theory-
based methods, traffic flow simulation and user-optimal dynamic traffic assignment have
been widely used in freeway travel time prediction. Examples include Papageorgiou et al.
(2010) and Dion et al. (2004). In data-based traffic time prediction models, the function that
relates traffic factors with the prediction result (dependent variable) is not obtained from
predetermined traffic theory, as the relationships of variables come from the sample data
itself by using statistical data mining methods. This approach greatly expands the pool of
researchers who can participate in travel time prediction because they no longer have to
become experts in traffic theory. However, such data-based methods usually need a lot of
data, which is not always available. The data-based models are strongly subjected to data
availability and accessibility (Van Lint, 2006).

In general, the data-based models can be divided into two categories, which are
parametric and non-parametric models. In the parametric models, the parameters can be
estimated to define the function, which are predefined and set in a finite-dimensional space.
The most widely applied parametric model is linear regression, where the dependent
variable is always a linear function of the explanatory input variables. Generally, the
independent temporal variables are traffic observations in several past time intervals. The
second type of parametric model is the Bayesian net, which assumes that the explanatory
variables are always conditionally independent given the dependent variable. The third
group of the parametric models in modeling travel time is time series models, of which the
most widely used one is the autoregressive integrated moving average model.

In the non-parametric models, the structure of the model is not predefined and the
intrinsically complex relationships cannot be expressed by simple functions. Furthermore, the
term non-parametric does not mean that there are no parameters to be estimated, but on the
contrary, it means that the number and typology of the parameters are unknown a priori and
possibly infinite depending on the sample data set (Mori et al., 2015). With the rapid
development of data science, the methodologies for non-parametric estimation are also being
quickly updated. Along this line, the most widely seen in the literature of travel time
prediction is the artificial neural networks (ANN). ANN models are widely used in
transportation because of their ability to capture complex relationships in large data sets
(Dharia and Adeli, 2003). Unlike multivariable models, ANN models are developed without a
predetermined form of function, whereas they can overcome multicollinearity problems.
Different types of neural networks have been applied in travel time prediction, from regular
multilayer feedforward neural networks (Yildirimoglu and Ozbay, 2012) to more complex
spectral basis neural networks (Park et al., 1999). Another choice for travel time prediction is
using support vector machine (SVM) methods. This advanced algorithm consists of decision
function, the application of the kernel functions and the sparsity of solutions. The SVM
models have a good performance on travel time prediction with historical travel time data.
Some researchers (Yildirimoglu and Geroliminis, 2013; Wu et al., 2004) used SVM methods to
estimate travel times. In the calculation process, the kernel function can map the input data
into a higher-dimensional space. In the model generating process, the flattest linear function is
identified which relates to the transferred input vectors into the target variables. Travel time
prediction will be based on the function, which can be mapped into the initial space by the
flattest linear function. Both the ANN and SVM models tend to be overfitting due to their
complicated structures and the large number of parameters that need to be calibrated, which is
a serious problem that commonly existed in the non-parametermachine learning algorithm.

The local regression approach is another non-parametric approach that always produces
accurate and reliable results. The main idea of local regression is to generate a method to
choose a set of historical data points which have similar properties to the current situation
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and predict the travel time using a constructed model with these chosen data points. Various
local regression models can be used depending on the type of methods used to select the
set of similar historical points and depending on the methodology chosen to fit the model
(Mori et al., 2015).

There have also been some semi-parametric models developed, as a combination of
parametric and non-parametric methods, in travel time prediction. Some of the strict
assumptions of the parametric model are loosened to obtain a more flexible structure (Ruppert
et al., 2003). In the application of travel time prediction, semi-parametric models are presented
as varying coefficient regression models. The prediction result (travel time) was defined as a
linear function of the naive historical and instantaneous predictors; however, the parameters
vary depending on the departure time interval and prediction horizon (Schmitt and Jula, 2007).

In summary, with the wide applications of big data in the field of transportation, different
machine learning approaches have been deployed in the travel time prediction area. The
methodologies include, but are not limited to, the following: SVM regression, neural network
approaches (e.g. state-and-space neural network, long short-term memory neural network),
nearest neighbor (e.g. k-nearest neighbor) and ensemble learning (e.g. RF and gradient
boosting), etc. Table 1 provides a summary of the studies reviewed in chronological order.

3. Data collection and processing
3.1 Data collection
3.1.1 Travel time data. In this study, the raw travel time data are gathered from the regional
integrated transportation information system (RITIS), an advanced traffic system that includes
segment analysis, probe data analytics and signal analytics. A series of major freeway segments
in Charlotte, North Carolina are selected for the case study: as one of the most heavily traveled
interstate freeways in the City of Charlotte area, I-485 is an interstate highway loop encircling the
city, which completed the last segment on June 5, 2015. Charlotte metropolitan area has been
growing and in the past 25years, the Charlotte area population has increased from 688,000 to 1.4
million and more than 500,000 more residents are anticipated over the next 20years. In 2018
alone, there was over $1bn in capital investment in the region. One result of this growth is
increased traffic congestion. I-485 freeway segments in the vicinity of the southern Charlotte area
experiences massive traffic congestion during weekdays due to heavy commuter and interstate
traffic. As the recurrent congestion seriously affects the travel and further economic development
in this area, the I-485 Express Lanes project will add one express lane in each direction along I-485
between I-77 and US 74 (Independence Boulevard), resulting in a seamless network of express
lanes in southern Mecklenburg county that could improve travel time reliability and traffic flow
in this critical transportation corridor. The project will also add one general-purpose lane in each
direction along I-485 between Rea Road and Providence Road. The estimated cost is $346m and
the construction began in summer 2019 and the completion date is 2022.

In the RITIS system, the selected section of I-485 Southern loop starts from the
interchange with I-77 (Exit 67) and ends at the interchange with US-74 (Exit 51). The
directions include clockwise and counter-clockwise and 37 miles of roadways and 32 traffic
message channel (TMC) code segments are selected in this study. All the selected segments
have uninterrupted coverage in the RITIS data 24 h per day and 365 days a year. The data
set is collected from January 1, 2019 to December 1, 2019, and the interval is 15min. An
example of the raw time data used in this study is shown in Table 2 below.

3.1.2 Weather data collection. The historical weather data are also collected at locations
that are close to the Charlotte Douglas International airport. The raw weather data includes
information on different categories such as temperature, dew point, humidity, pressure,
visibility, wind direction, wind speed, gust speed, precipitation and conditions. The raw
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weather data were recorded on a per hour basis, and as such, the discrepancy in the time
intervals was treated by a mapping methodology to combine the traffic data with the weather
data. An example of the rawweather data used in this study is shown in Table 3 below.

3.2 Data processing
Based on previous studies, it was revealed that travel speed is much more sensitive to severe
weather events. The weather conditions in the Charlotte area were originally classified into
30 detailed weather conditions. However, in this study, the weather conditions are further
categorized into only three groups including normal, rain and snow/fog/ice. Table 4 presents
the detailed classification of the newly grouped weather conditions. To keep the sample size
to the extent that is acceptable, “snow,” “fog,” “ice pellet” and other similar conditions are
combined because of their rates of occurrence.

Table 2.
Sample raw travel

time data

TMC code Timestamp Speed (mile/h) Travel time (second)

125N04784 1/1/2019 0:00 62.91 53.58
125N04783 1/1/2019 0:00 61.17 12.82
125N04786 1/1/2019 0:00 60.43 47.56
125N04785 1/1/2019 0:00 61.3 11.85
125N04780 1/1/2019 0:00 63.97 14.59
125N04782 1/1/2019 0:00 63.04 21.73
125N04781 1/1/2019 0:00 62.79 12.42
125N04788 1/1/2019 0:00 65.03 29.6
125N04787 1/1/2019 0:00 63.5 53.76
125N04789 1/1/2019 0:00 64.79 54.5
125–04783 1/1/2019 0:00 62.98 33.22
125–04782 1/1/2019 0:00 62.75 35.68
125–04785 1/1/2019 0:00 60.54 5.16
125N04784 1/1/2019 0:00 62.91 53.58

Notes: The table includes the following information: TMC code: the RITIS system uses the TMC and
assigns a unique identifier code to each road segment. In other words, the TMC code is a road segment ID.
Timestamp: this shows the timestamp of the record. Speed: this presents the current estimated harmonic
mean speed on the roadway segment in miles per hour. Travel time: this field indicates the time that it takes
to drive along the roadway segment

Table 3.
Sample raw weather

data

Date Time (EDT) Visibility Conditions

Saturday, Oct 5, 2019 7:55 a.m. 2.0 mi Rain
Saturday, Oct 5, 2019 8:55 a.m. 2.0 mi Rain
Saturday, Oct 5, 2019 9:55 a.m. 2.0 mi Light rain
Saturday, Oct 5, 2019 10:55 a.m. 2.0 mi Light rain
Saturday, Oct 5, 2019 11:55 a.m. 3.0 mi Light rain
Saturday, Oct 5, 2019 12:55 a.m. 2.0 mi Light rain
Saturday, Oct 5, 2019 13:55 a.m. 3.0 mi Light rain
Saturday, Oct 5, 2019 14:55 a.m. 7.0 mi Light rain
Saturday, Oct 5, 2019 15:55 a.m. 6.0 mi Light rain
Saturday, Oct 5, 2019 16:55 a.m. 7.0 mi Light rain
Saturday, Oct 5, 2019 17:55 a.m. 4.0 mi Rain

Note: EDT = Eastern daylight time

Random
forests

approach

137



To merge the link travel times data set with the historical weather data set, the issue of
different intervals of two data sets should be resolved first. The RITIS data sets are
aggregated into 15 min intervals, while the weather data set is aggregated into 1 h intervals.
Therefore, the weather conditions are distributed evenly with the RITIS data set based on
the timestamp.

4. Travel time prediction methodology
4.1 Ensemble learning methodology
An ensemble itself is a supervised learning algorithm, which can be trained and used to
make predictions. The ensemble learning-based algorithms consist of multiple base models
(e.g. decision tree model), each of which provides an alternative solution to the problem. The
prediction results tend to be more accurate when there is a strong diversity among the
models (Kuncheva and Whitaker, 2003). Decision trees always suffer from high variance
which causes the instability of the prediction results. Bootstrap aggregating (bagging) is a
machine learning ensemble meta-algorithm designed to improve the stability and accuracy
of machine learning algorithms. In the bagging process, the algorithm builds multiple
models from the same original samples data set to reduce the variance. However, the
bagging can make the trees highly correlated. RF is an extension of bagging in that in
addition to building trees based on multiple samples of the original training data, it also
constrains the features that can be used to build the trees, forcing trees to be different. To
date, the RF models have been widely applied to various research fields (Greenhalgh and
Mirmehdi, 2012; Jia et al., 2016). For classification tasks, RF typically gives high accuracy
while also having a faster classification time. An RF classifier requires training with large
data sets, which in our study are obviously available because of the nature of the travel
record data collected. Furthermore, the RF computational process runs efficiently on large
data sets, which can reduce model complexity, overcome the overfitting to some extent and
improve the efficiency. As known, overfitting means that the estimated model fits the
training data too well. Generally, this is caused by the fact that the model function is too
complicated to consider each data point and even outliers. The RF method can build a large
number of random trees and then combine the results from each individual tree. The benefit
of using the RFmethods is that through averaging, the variance can be reduced.

Table 4.
Classification of the
weather conditions

Snow/fog/ice Rain Normal

Haze Light rain Clear
Fog Rain Partly cloudy
Smoke Heavy rain Mostly cloudy
Patches of fog Light drizzle Scattered clouds
Mist Heavy thunderstorm Overcast
Shallow fog Thunderstorms an Unknown
Light freezing R Light thunderstorm Squalls
Light ice pellet Thunderstorm
Light freezing D Drizzle
Light freezing F
Ice pellets
Light snow
Snow
Heavy snow
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4.2 Random forest algorithm
RF is an algorithm that can compete with gradient boosted trees in ensemble learning,
especially because of its convenient parallel training, which is very attractive in the era of
big data and large samples. RF is an ensemble tool which takes a subset of features to build
multiple decision trees. Before the explanation of RF, one needs to mention decision trees. A
decision tree is a very simple algorithm, which is a supervised learning algorithm based on
the if-then-else rules. Its explanation is strong, and it is in line with human intuitive thinking.
For each separate decision tree, the feature selection is conducted randomly, which means
there is no correlation between different decision trees. The low correlation between models
is the key in which uncorrelated models can produce ensemble predictions that are more
accurate than any of the individual predictions. RF is an integrated algorithm that is
composed of decision trees, which can get the final prediction better than any best separate
judge. The RF algorithm procedure consists of the followingmain steps:

� Step 1: Randomly draw the samples from a given data set.
� Step 2: Construct a decision tree for each sample and predict the result.
� Step 3: Voting will be performed from the independent prediction results.
� Step 4: Select the popularly voted result for the classification problem or average the

results for regression.

Figure 1 shows the prediction process of the RF algorithm, which is described as follows:
� The number of training data points is N and the number of variables in the classifier

isM;

Figure 1.
RF algorithm
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� Select the m variables in the whole variable set M to determine the decision at a
node of the tree (Note thatm is always considerably smaller thanM);

� To construct the forest by trees, choose a training set k times with replacement from
all N training data set. Each of these data sets is called a bootstrap data set. The
number k is the number of the trees to be trained;

� For each tree node, randomly choosem variables on which to make the decision at that
node. Calculate and get the best split based on thesem variables in the training set; and

� The Gini index is used for calculating the Gini value to determine the best split
point, which can be used to describe the purity after the split. The Gini index will fall
between 0 to 1 and the smaller the value, the better the split. If a data set contains
elements from two classes, the Gini index is defined as follows:

Gini Tð Þ ¼ 1�
Xn

j¼1

p2j
� �

(1)

where pj is the relative proportion of class j in the original data set T and n is the number of
classes in data setT.

Ginisplit Tð Þ ¼ N1

N
Gini T1ð Þ þ N2

N
Gini T2ð Þ (2)

5. Proposed travel time prediction approaches
5.1 Feature selection and pre-processing steps
In the prediction model, the southern part of the I-485 freeway is divided into 32 sections by the
recorded sensor segment in this study. Traffic data on each segment (from sensor to sensor)
contains information on the subject segment and adjacent segment travel times, day of week
(DOW), time of day (TOD), segment length and space mean speed. The RITIS real-world travel
time data used for this study has a less than 0.5% missing rate (i.e. 4,246 out of 981,083). Note
that in this study, the missing values are simply replaced with the mean of its closest
surrounding values. From the previous studies (Wang et al., 2018), the variables that have a
significant impact on the travel time prediction included the basic variables (such as TOD,
DOW, month and weather) and the spatial and temporal characteristics of the adjacent road
segments. Furthermore, in this study, the travel times (which are collected several steps ahead
of the travel time to be predicted) are also accounted for in the model estimation. The prediction
model is developed under normal traffic conditions and does not consider unexpected
conditions (e.g. special events). The data on each segment will be used to train one forest which
consists of decision trees. The RF model prediction includes two major steps: training and
prediction. The forests are constructed by using randomly selected parameter combinations
and different numbers of trees during the training step. The selected variables include the
temporal features, such as travel time at prediction segment 15, 30 and 45min before, which is
defined as Tt�1, Tt�2 and Tt�3, respectively. The travel time at prediction segment exactly
1week before, which are defined as Tt�w; TOD and DOW as important temporal features are
also included. The spatial features include road segment identification (ID), segment length. In
the data preparation, the temporal-spatial features are also generated, including the travel time
of the nearest downstream and upstream road segment 15min before, which are defined as
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Tiþ1
t�1 and Ti�1

t�1, respectively. The detailed information and definition of the selected variables
can be seen in Table 7.

5.2 Model development
To achieve the best modeling results, it is important to explore the effect of different
combinations of parameters on the RF model prediction performance. Based on previous
studies, there are primarily three features that can be tuned to optimize the predictive power
of the model: the maximum number of features (Max_features), the number of trees
(N_estimators) andminimum leaf size (Min_sample-leaf). They are presented as follows:

5.2.1 Max_features. This is the maximum number of features in the RF model that is
allowed to try in each tree. There are multiple options available in Python to assign
maximum features. “Auto/None” is a command that simply takes all the features that make
sense in every tree, which simply does not put any restrictions on the individual tree. The
“SQRT” option takes the square root of the total number of features in each individual run.
For example, if the total number of variables is 100, under this option the system can only
take 10 of them in each individual tree. The “log2” option is another similar type of option
used for max_features. In this study, after several tests, the random subspace method
is applied. The number of features considered at each internal node of RF is m, which is
randomly chosen to be m = INT(log2M þ 1), where m is the total number of features, as
suggested by Breiman (2001a, 2001b).

5.2.2 n_Estimators. This is the number of trees that one wants to build before taking the
maximum voting or averages of predictions. A larger number of trees will give one better
performance with a compromise of computing efficiency. As such, one should choose a value
as high as what the processor can handle because this makes the predictions stronger and
more stable.

5.2.3 Min_sample_leaf. This is the minimum leaf size. The leaf is the end node of a
decision tree, which is the number of cases or observations in that leaf. A smaller leaf makes
the model more prone to capture noise in the train data. To optimize the RF model, it is
important to estimate the effect of different combinations of parameters on the model’s
performance. Based on this information, in this study, the tool RandomSearch is applied to
optimize the tuning process to achieve a lower prediction error. In this study, after several
trials of different min_sample_leaf, a minimum leaf size of 30 is chosen. When the
parameters select 50 as the number of trees and 30 as the minimum leaf size, the mean
absolute percentage error (MAPE) reaches the lowest 5.97%. This process is shown in
Figure 2 and Table 5 demonstrates how the performance varies with different combinations
of parameters (i.e. the number of trees and the minimum leaf size). RF models are not
sensitive if the features are independent or dependent, though many will perform better if
the data are preprocessed. A simple way to identify dependence among features is to
calculate a correlation coefficient between each feature and all other features. From Figure 2
and Table 5, the results clearly show that when the number of trees reaches 50, the value of
MAPE becomes nearly the same. In statistics, overfitting is the co-product of an analysis
that corresponds perfectly to the sample set of data, and therefore, may fail to fit additional
data or predict future observations reliably, which is a general problem of traditional
ensemble learning methods. For example, the prediction error usually increases when the
number of trees increases after it reaches the optimized point in the tree base model (Zhang
and Haghani, 2015). There is also a need to consider the tradeoff between prediction
accuracy and computational time. As when a large number of trees are being fitted, model
complexity also increases and requires more computational time. The “randomness” in an
RF means two things: n training samples are randomly extracted from the training set and
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the m feature subsets are randomly drawn from M features. The introduction of such
randomness is very important to the performance of RF. Due to their introduction, the RF is
not prone to overfitting and is very noise-resistant (i.e. insensitive to default values).

It is also important to note that the performance measure used in this study is the MAPE.
TheMAPE statistic usually expresses accuracy as a percentage that is calculated as follows:

MAPE ¼ 1
m

Xm

i¼1

jyi � y^ij

where
m = the total number of the data points;
y^i = the predicted travel time value in the test data set of record i; and
yi = the actual travel time value in the test data set of record i.

To measure the effectiveness of different travel time prediction algorithms, the MAPEs are
computed for three different observation segments (where A, B, C are three observation

Figure 2.
RF travel time
prediction model
performance

Table 5.
The MAPEs based
on the combination of
parameters (unit: %)

No. of trees Leaf = 5 Leaf = 10 Leaf = 20 Leaf = 30 Leaf = 50

1 31.11 29.87 26.56 26.01 26.74
3 29.05 26.34 23.52 22.46 23.59
5 27.38 25.9 22.09 21.28 22.24
10 19.98 16.87 6.13 6.01 6.26
20 9.78 7.56 6.1 5.99 6.05
50 6.13 6.14 6.12 5.97 5.99
100 6.46 6.48 6.51 6.42 6.54
500 6.7 6.72 6.73 6.6 6.72
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segments along the selected freeway for study, shows in Figure 3) with different prediction
horizons from 15min to 60min. According to the comparison shown in Table 6 and
Figure 4, the performance of the proposed RF is better than the eXtreme Gradient Boosting
(i.e. [XGBoost], another widely used tree-based ensemble method), especially when the
horizon of prediction time is long. The MAPEs of the RF model is significantly smaller than
XGBoost when the horizon is long enough (i.e. longer than 45min).

In the machine learning area, usually, only part of the predictor variables have significant
impacts on the prediction results. Exploring the impact on the individual feature can help
researchers and policymakers better understand contributing variables. Higher relative
importance indicates a higher influence on travel time. Table 7 presents the relative importance of
each variable and its ranks in the optimized RFmodel. FromTable 7, each predictor variable has
significant and different degrees of impact on the predicted travel time. The model result shows
that the variable Tt�1 (travel time 15min before) contributes the most (34.85%) to the predicted
travel time result. This result is expected and consistent with a previous study (Zhang and
Haghani, 2015), which demonstrates that the immediate previous traffic condition will directly
influence the traffic condition in the future. TOD is the second-highest ranked variable with the
relative importance value of 30.12% and this result is also under expectation. Tt�w is the fourth-
highest ranked variable with an importance value of 9.87%, which can be interpreted as a highly
similar pattern of traffic times betweenweeks.

Figure 3.
Selected road

segments for case
study

Table 6.
The comparison of
different prediction

methods

MAPE (%) of different road segments with a different prediction horizon
Models 15 min 30 min 45 min 60 min

A B C A B C A B C A B C

RF 6.49 6.15 6.39 9.69 9.97 10.67 15.29 16.19 17.37 24.59 25.66 26.76
XGBoost 6.57 6.14 6.39 10.58 9.98 10.89 15.35 15.98 17.90 25.90 26.06 28.09
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The result in Table 7 also shows that the spatial impact is less than the temporal impact, as,
except for the variable road ID with a relative importance value of 2.28%, all the relative
importance values of other spatial variables are less than 1%. Several variables such as the
travel time of the two upstream segments (with the relative importance value of 0.31% and
0.42%, respectively) and the travel time of the two downstream segments (with the relative
importance value of 0.35% and 0.61%, respectively) one time-step ahead are considered in the
model. With respect to the travel time change value, the relative importance values of the two
upstream segments are both 0.29% and the relative importance values of the two upstream
segments are 0.79% and 0.37%, respectively. Based on these results, it could be explained that
the relative importance values of the downstream segments are higher than those of upstream
segments. The reason is caused by the spatial characteristics of the roadway. When a
bottleneck occurs at the downstream segment, the upstreamwill be impacted very shortly.

6. Conclusions and recommendations
The tree-based ensemble methods are widely used in the field of prediction. By combining a
simple tree with a forest, RF always produces high prediction accuracy (Zhang and
Haghani, 2015). In this study, the authors applied an RF method to analyze and model
freeway travel time to improve the prediction accuracy and model interpretability. Most
existing machine learning models can capture the nonlinear pattern of travel time but suffer
from over-fitting. Study results indicated that the RF model has its considerable advantages
in freeway travel time prediction, the performance evaluation result showed that the RF-
based model can have better predictions in terms of prediction accuracy. RFmodel showed a
reasonable performance compared with other approaches. When the prediction horizon is no
more than 15 min, the RF algorithm is relatively accurate. However, when the prediction
horizon is longer than 30min, the prediction error increases dramatically like other methods.
Different from other machine learning methods, RF methods provide interpretable results
with different types of predictor variables. RF can also handle data with very high
dimensions (many features) without specific feature selection (because feature subsets are
randomly selected) and identifies which features are more important after the training

Figure 4.
MAPEs for different
road segments with
different prediction
horizon
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process. Furthermore, it has an effective way of estimating missing data and maintaining
accuracy when a significant proportion of the data are missing. The relative importance of
the features shows that the travel time one step ahead (15min before) contributes the most to
the predicted travel time. Features such as the TOD, DOW and the travel time at prediction
segment one week before and weather also have higher relative importance values in the
model than other features. Adding up the most important eight variables’ relative
importance values (Tt�1, TOD, Speed, Tt�w, DOW,Weather, Road ID, Month) in the Table 7
will be as high as 94.77%, which means that these eight selected variables include most of
the information needed in the travel time prediction. The proposed RF travel time prediction
method has considerable advantages over the other tree-based approach.

However, the practice of RF algorithm and other tree-based ensemble methods in the
travel time prediction area is still very limited. The future focus of the research would be
hybrid models (combination models) which can combine several models of the same or

Table 7.
Relative importance
of each variable and
their ranks in the RF

model

Variable Definition
Relative

importance (%) Rank

ID Road segment ID 2.28 7
L Length of the road segment 0.17 23
Speed Space mean speed 10.59 3
TOD TOD is indexed from 1 to 96, which represent the time from

0:00–24:00 by every 15 min timestep
30.12 2

DOW DOW is indexed from 1 to 7, which represent from Monday
through Sunday

2.84 5

Month The month is indexed 1 to 12, which represent from January
to December

1.59 8

Weather Weather is indexed from 1 to 3, which represent normal,
rain and snow/ice/fog

2.63 6

Tt�1 The travel time at prediction segment 15min before 34.85 1
Tt�2 The travel time at prediction segment 30min before 0.57 11
Tt�3 The travel time at prediction segment 45min before 0.28 18
Tt�w The travel time at prediction segment oneweek before 9.87 4
DTt�1 The ravel time change value at Tt�1 0.24 19
DTt�2 The ravel time change value at Tt�2 0.20 21
DTt�3 The travel time change value at Tt�3 0.18 22
DTt�w The travel time change value at Tt�w 0.22 20
Ti�1
t�1 The travel time of the nearest upstream road segment

15min before
0.31 15

Ti�2
t�1 The travel time of the second nearest upstream road

segment 15min before
0.42 12

DTi�1
t�1 The travel time change value at the nearest upstream road

segment 15min before
0.29 16

DTi�2
t�1 The travel time change value at the second nearest

upstream road segment 15min before
0.29 16

Tiþ1
t�1 The travel time of the nearest downstream road segment

15min before
0.35 14

Tiþ2
t�1 The travel time of the second nearest downstream road

segment 15min before
0.61 10

DTiþ1
t�1 The travel time change value at the nearest downstream

road segment 15min before
0.79 9

DTiþ2
t�1 The travel time change value at the second nearest

downstream road segment 15min before
0.37 13
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different types of prediction models to enhance the model performance and prediction. The
RF method can be combined with other tree-based methods or another type of machine
learning method in the preprocessing step or prediction step. Experimental results showed
the combination methods have a better prediction result than using a method alone (Li et al.,
2009). As the combination model method has been proved superior in terms of prediction
accuracy, this should be given careful consideration in the future.
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