Search results

1 – 10 of 27
Article
Publication date: 1 January 2006

N. Geren, M. Çakirca and M. Bayramoğlu

To design a flexible integrated robotic assembly and rework (remanufacturing) cell for assembly, selective assembly and rework of advanced surface mount components (SMCs) using…

Abstract

Purpose

To design a flexible integrated robotic assembly and rework (remanufacturing) cell for assembly, selective assembly and rework of advanced surface mount components (SMCs) using the generic methodology developed in this paper.

Design/methodology/approach

Manual rework procedures are investigated for all advanced SMCs. General and specific component‐related rework considerations are obtained and necessary tooling candidates for automation are determined. This is followed by determination of the specific automated rework procedure and selection of suitable tooling for automated robotic rework and generation and evaluation of design concepts.

Findings

The developed methodology, which considers the reflow tool at the centre of the development process, has worked well in designing a flexible integrated robotic assembly and rework cell.

Practical implications

This study identified the rework requirements for advanced SMCs, the essential features for rework reflow tools, criteria for comparing reflow tools, and a generic procedure for design and concept selection.

Originality/value

It provides valuable knowledge for designers of flexible integrated robotic assembly and rework cells for assembly, selective assembly and rework of advanced SMCs.

Details

Soldering & Surface Mount Technology, vol. 18 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 January 1994

N. Geren and N.N. Ekere

Although rework is labour intensive and conflicts with most modern manufacturing/assembly philosophies, realistic defect levels in surface mount technology (SMT) printed circuit…

Abstract

Although rework is labour intensive and conflicts with most modern manufacturing/assembly philosophies, realistic defect levels in surface mount technology (SMT) printed circuit board (PCB) assembly render rework indispensable on the shop floor. Most commercially available rework tools are manual or require very skilled operators for their efficient operation. The challenges of automating SMD rework are significant because the tools, their specifications and rework processes required are not fully understood, and the impact of rework processes on assembly quality and reliability are hotly debated. This paper describes an automated robotic rework cell for SMD and TH boards, and the method used for process characterisation of the solder paste dispensing system. The paper also describes equipment selection, the integration and interfacing of the dispensing equipment to the cell controller and the process characterisation experiments.

Details

Soldering & Surface Mount Technology, vol. 6 no. 1
Type: Research Article
ISSN: 0954-0911

Article
Publication date: 20 September 2011

Necdet Geren, Çağdaş Sarıgül and Melih Bayramoğlu

The generic design environment for a flexible printed‐circuit board assemblies (PCBA) remanufacturing cell contains four interrelated complex design domains. Mechanical design…

Abstract

Purpose

The generic design environment for a flexible printed‐circuit board assemblies (PCBA) remanufacturing cell contains four interrelated complex design domains. Mechanical design domains are really complex and the use of well‐proven mechanical product design methodologies does not help the designer. Hence, this paper aims to develop a generic systematic design methodology for a flexible PCBA remanufacturing cell.

Design/methodology/approach

The study investigates the use of conventional mechanical product design techniques for the design of a flexible PCBA rework (remanufacturing) cell. It indicates problems and the weaknesses when conventional product design techniques are used for the development of flexible manufacturing systems (FMS). It then provides a new systematic mechanical design methodology for designing a flexible PCBA rework (remanufacturing) cell. The design methodology is intended to be generic in order to apply successfully to any FMS design.

Findings

Conventional product design methodology cannot be used directly for the design of a flexible PCBA remanufacturing cell. Hence, two design methodologies were developed: the generic FMS mechanical design methodology and a specific FMS design methodology for a PCBA rework cell. The first one was developed based on the tasks of the conventional product design process integrated with new design tools. The generic design methodology was then extended to obtain the second methodology for a PCBA rework cell design. Both of the methodologies were applied to a flexible PCBA rework cell design problem. Both design methodologies eliminated unusable design solutions at the early design stages of the conceptual design process and made the design process easier.

Practical implications

The generic and specific design methodologies provide a better design environment, even for less specialized FMS designers.

Originality/value

The design methodologies may help for the commercialization of a flexible PCBA remanufacturing cell that may be used for SM rework and assembly.

Details

Soldering & Surface Mount Technology, vol. 23 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 22 June 2012

Necdet Geren, Çağdaş Sarıgül and Melih Bayramoğlu

The purpose of this paper is to apply the developed systematic mechanical design methodologies, that are obtained in part I, to investigate their success in designing mechanics of…

Abstract

Purpose

The purpose of this paper is to apply the developed systematic mechanical design methodologies, that are obtained in part I, to investigate their success in designing mechanics of a flexible printed circuit board assembly (PCBA) rework cell.

Design/methodology/approach

The decision of soldering and desoldering tool, which is the most critical function of a PCBA rework or remanufacturing cell, significantly influences overall design concept. Therefore, the paper starts by applying the design methodology to the soldering and desoldering function. The same study is repeated for the rest of the sub‐functions but only the results are provided.

Findings

An application of rework machine design methodology for the design of a PCBA rework cell has been made available. In addition to this, the embedded knowledge, such as the requirements list, the function structure, the function/means tree, the weighted objective tree and evaluation chart for the soldering and desoldering function are provided.

Practical implications

The paper is the first work providing both embedded knowledge and the application of the systematic design methodology for the design of a fully automated flexible PCBA rework cell. The methodology leads rework machine designers in a well‐controlled and structured design environment.

Originality/value

The design methodology can be applied to all functions or targeted on key weighted areas to ensure that the designed rework machine meets the key areas of concerns. Furthermore, the methodology is generic and may be used to develop other complex manufacturing sytems.

Article
Publication date: 4 April 2016

Chun Sean Lau, C.Y. Khor, D. Soares, J.C. Teixeira and M.Z. Abdullah

The purpose of the present study was to review the thermo-mechanical challenges of reflowed lead-free solder joints in surface mount components (SMCs). The topics of the review…

1049

Abstract

Purpose

The purpose of the present study was to review the thermo-mechanical challenges of reflowed lead-free solder joints in surface mount components (SMCs). The topics of the review include challenges in modelling of the reflow soldering process, optimization and the future challenges in the reflow soldering process. Besides, the numerical approach of lead-free solder reliability is also discussed.

Design/methodology/approach

Lead-free reflow soldering is one of the most significant processes in the development of surface mount technology, especially toward the miniaturization of the advanced SMCs package. The challenges lead to more complex thermal responses when the PCB assembly passes through the reflow oven. The virtual modelling tools facilitate the modelling and simulation of the lead-free reflow process, which provide more data and clear visualization on the particular process.

Findings

With the growing trend of computer power and software capability, the multidisciplinary simulation, such as the temperature and thermal stress of lead-free SMCs, under the influenced of a specific process atmosphere can be provided. A simulation modelling technique for the thermal response and flow field prediction of a reflow process is cost-effective and has greatly helped the engineer to eliminate guesswork. Besides, simulated-based optimization methods of the reflow process have gained popularity because of them being economical and have reduced time-consumption, and these provide more information compared to the experimental hardware. The advantages and disadvantages of the simulation modelling in the reflow soldering process are also briefly discussed.

Practical implications

This literature review provides the engineers and researchers with a profound understanding of the thermo-mechanical challenges of reflowed lead-free solder joints in SMCs and the challenges of simulation modelling in the reflow process.

Originality/value

The unique challenges in solder joint reliability, and direction of future research in reflow process were identified to clarify the solutions to solve lead-free reliability issues in the electronics manufacturing industry.

Details

Soldering & Surface Mount Technology, vol. 28 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 15 July 2019

Hao Cao, Rong Mo and Neng Wan

The proposed method is to generate the 3 D model of frame assemblies based on their topological model automatedly. It was a very demanding task and there was no appropriate…

Abstract

Purpose

The proposed method is to generate the 3 D model of frame assemblies based on their topological model automatedly. It was a very demanding task and there was no appropriate automated method to facilitate this work.

Design/methodology/approach

The proposed method includes two stages. The first stage is decisive. In this stage, a deep learning network and the Chu–Liu–Edmonds algorithm are used to recognize contact relations among parts. Based on this recognition, the authors perform a geometrical computation in the second stage to finalize the 3 D model.

Findings

The authors verify the feasibility of the proposed method using a case study and find that the classification rate of the deep learning network for part contact relations is higher than 75 per cent. Furthermore, more accurate results could be achieved with modification by the Chu–Liu–Edmonds algorithm. The proposed method has lower computational complexity compared with traditional heuristic methods, and its results are more consistent with existing designs.

Research limitations/implications

The paper introduces machine learning method into assembly modelling issue. The proposed method divides the assembly modelling into two steps and solves the assemble relation creatively.

Practical implications

Frame assemblies are fundamental to many areas. The proposed method could automate frame assembly modelling in a viable way. It could benefit design and manufacture process significantly.

Originality/value

The proposed method expands the application of machine learning into a new field. It would be more useful than simple machine learning in industry. The proposed method is better than general heuristic algorithms. It outputs identical results when the inputs are the same. Meanwhile, the algorithmic complexity in worst situation is better than general heuristic algorithms.

Details

Assembly Automation, vol. 39 no. 5
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 1 August 1999

A.D. Stennett and D.C. Whalley

Component removal for rework and repair is traditionally achieved by re‐melting of the solder, but the exposure of the assembly or its component parts to repeated soldering…

Abstract

Component removal for rework and repair is traditionally achieved by re‐melting of the solder, but the exposure of the assembly or its component parts to repeated soldering/ desoldering cycles may cause both immediate damage and create a significant long term reliability hazard. Rework is labour intensive and requires skilled operators. Area array components further increase the complexity of the rework process because of the number and inaccessibility of the solder joints. There is a growing requirement to recycle/reclaim electronic waste, creating the need for an effective process for dismantling of printed circuit board assemblies (PCBAs). This paper will present a brief review of alternative non‐thermal techniques for rework or dismantling of conventional soldered assemblies, including both chemical etchants and mechanical techniques. Results will then be presented on trials of chemical etchants, where rates of solder removal consistent with realistic times for component removal have been readily achieved using commercially available tin‐lead strippers. Electrochemical techniques are also shown to be usable in specific applications, i.e. where electrical contact can be readily made to the solder joints to be removed, and have the advantage of reclaiming the removed solder directly from the electrolyte.

Details

Soldering & Surface Mount Technology, vol. 11 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 7 September 2022

Yun Zhang and Xiaojie Xu

Here, the authors use step angles, stage ratios, feed rates and spindle speeds as predictors to develop a Gaussian process regression for predicting thrust force during composite…

Abstract

Purpose

Here, the authors use step angles, stage ratios, feed rates and spindle speeds as predictors to develop a Gaussian process regression for predicting thrust force during composite laminates drilling with step drills.

Design/methodology/approach

Use of machine learning methods could benefit machining process optimizations. Accurate, stable and robust performance is one of major criteria in choosing among different models. For industrial applications, it is also important to consider model applicability, ease of implementations and cost effectiveness.

Findings

This model turns out to be simple, accurate and stable, which helps fast estimates of thrust force. Through combining the Taguchi method's optimization results and the Gaussian process regression, more data could be expected to be extracted through fewer experiments.

Originality/value

Through combining the Taguchi method's optimization results and the Gaussian process regression, more data could be expected to be extracted through fewer experiments.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 15 September 2023

Payman Sahbah Ahmed

Epoxy resins are widely used in a variety of engineering applications, including composite wind turbine blades used in the renewable energy industry, highly complex structural…

Abstract

Purpose

Epoxy resins are widely used in a variety of engineering applications, including composite wind turbine blades used in the renewable energy industry, highly complex structural components for aircraft, paints, coatings, industrial tooling, biomedical systems, adhesives, electronics and automotive. Epoxies' low fracture toughness is one of the key obstacles preventing its adoption in a wider range of applications. To address epoxy's low fracture toughness, this paper aims to examine the roles of intra-ply hybridization and nano reinforcing.

Design/methodology/approach

This paper investigates the role of intra-ply hybridization of glass-carbon woven fibers and adding 0.8 wt.% of multiwall carbon nanotube (MWCNT) nano reinforcement to overcome the low fracture toughness of epoxy. A bending test is used to calculate the composites elastic parameters, and a notched sample three-point bending test is used to show crack behavior in addition to using materials characterization methods to reveal the effect of the MWCNT on structure, bonding, glass transition temperature (Tg) and dispersion of MWCNT in the matrix. Furthermore, this paper suggests using the finite element method to overcome the difficulty in calculating the crack extension.

Findings

Intra-ply hybridization and MWCNT reinforcement decrease the crack extension of epoxy with time. The inclusion of high-strength carbon fiber increased the fracture toughness of glass composite. Furthermore, the existence of MWCNT in the surrounding area of the notch in epoxy composites hinders crack propagation and provides stiffness at the interface by bridging the crack and eventually enhancing its fracture toughness.

Originality/value

Studying the role of intra-ply hybridization of glass-carbon woven fibers and adding 0.8 wt.% of MWCNT nano reinforcement to overcome the low fracture toughness of epoxy. Additionally, this research recommends using the finite element method to overcome the challenge of computing the crack extension.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 30 August 2011

Fang Yang

The purpose of this paper is to investigate employees' work motivation in China. It aims to give answers to two questions: what motivates employees in China? What are the effects…

7149

Abstract

Purpose

The purpose of this paper is to investigate employees' work motivation in China. It aims to give answers to two questions: what motivates employees in China? What are the effects of personal characteristics on work motivation for employees in China?

Design/methodology/approach

The study used convenience sampling to select the sample and the respondents were randomly selected from employees of six organizations, from people in the personnel market and also from people walking around in shopping centres in a very representative city of China – Ningbo. Then, descriptive statistics, t‐test (one sample t‐test, independent sample t‐test and one‐way ANOVA), regression analysis and scatter plots were used to analyze the data.

Findings

The findings of the study are: all the 15 motivation factors listed in the questionnaire, including good pay, promotion, desirable work environment, good welfare package, good bonus system, good company policy, good interpersonal relationships, good supervisors, job security, the opportunity to use my ability, a sense of challenge and achievement, positive recognition, autonomy, self‐actualization and interesting job, do motivate employees in China; good pay is the most important motivator for employees in China; employees' work motivation is affected by their personal characteristics.

Originality/value

It is believed that these findings can assist organizations in China, those located in Ningbo in particular, in effectively motivating their employees. It may also be applied to organizations located in other parts of the world which have Chinese employees.

Details

Chinese Management Studies, vol. 5 no. 3
Type: Research Article
ISSN: 1750-614X

Keywords

1 – 10 of 27