Search results

1 – 2 of 2
Open Access
Article
Publication date: 27 April 2020

Christian Mauricio Cobos, Octavio Fenollar, Juan López Martinez, Santiago Ferrandiz and Luis Garzón

This paper aims to describe the influence of maleinized linseed oil (MLO), when used as a lubricant, on the thermal and rheological properties of PLA/MWCNTs (polylactic acid…

1382

Abstract

Purpose

This paper aims to describe the influence of maleinized linseed oil (MLO), when used as a lubricant, on the thermal and rheological properties of PLA/MWCNTs (polylactic acid/multi-walled carbon nanotubes) and PLA/HNT (halloysite nanotubes) nanocomposites, as a reference for application in 3D printing processes.

Design/methodology/approach

Nanocomposites were obtained by melting in a twin-screw extruder, mixing PLA with MWCNTs and HNTs in different percentages of 0.5, 0.75 and 1 Wt.% for subsequent mixing by the same process with 5 phr MLO, for application in additive manufacturing, as analyzed by means of differential scanning calorimetry (DSC), capillary rheometry, melt flow rate (MFL) and field emission scanning electron microscopy (FESEM).

Findings

The results obtained for thermal characterization by using DSC indicate the non-variation of glass transition temperature Tg = 62 ± 2°C and a melting temperature (Tm) around 170°C. Crystallization temperature dropped by approximately 12°C, which should be kept in mind during the transformation processes. The values obtained by capillary rheometry indicate that the material’s viscosity is reduced by the influence of the MLO plasticizer’s lubricant effect on the PLA’s molecular structure. The melt flow index values confirm a rise of approximately 46% in the flow index and back up the capillary rheometry results. The values obtained were as follows: PLA/0.5 Wt.% MWCNT/MLO 5 phr 54.07, PLA/0.75 Wt.% MWCNT/MLO 5 phr 53.46, PLA/1 Wt.% MWCNT/MLO 5 phr 51.84y PLA/0.5 Wt.% HNT/MLO 5 phr 61.8, PLA/0.75 Wt.% HNT/MLO 5 phr 68.3 and PLA/1 Wt.% HNT/MLO 5 phr 71.2 g/10 min. Apart from the nanocharge distribution, the information obtained from the FESEM shows the existence of a cluster, which could have been avoided by more energetic stirring during the nanocompound manufacturing process.

Social implications

This paper presents an analysis of the insertion of plasticizer in nanocomposites for the application in additive manufacturing processes in fusion deposition modelling (FDM) system.

Originality/value

This is a novel original research work.

Details

Rapid Prototyping Journal, vol. 26 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 7 August 2024

Yosef Jazaa

This study aims to explore the enhancement of mechanical properties in epoxy resin composites through the incorporation of graphene nanoparticles, focusing on their impact and…

Abstract

Purpose

This study aims to explore the enhancement of mechanical properties in epoxy resin composites through the incorporation of graphene nanoparticles, focusing on their impact and wear resistance. It investigates the role of graphene, both treated and untreated, as a reinforcing agent in composites, highlighting the significance of nanoparticle dispersion and surfactant treatment in optimizing mechanical performance.

Design/methodology/approach

Employing a novel dispersion technique using a drawing brush, this research contrasts with traditional methods by examining the effects of graphene nanoparticle concentrations treated with surfactants – Polyvinylpyrrolidone (PVP) and Sulphonated Naphthalene Formaldehyde (SNF) – on the mechanical properties of epoxy resin composites. The methodology includes conducting a series of impact and wear tests to assess the influence of graphene reinforcement on the composites' performance.

Findings

The findings reveal a marked enhancement in the composites impact resistance and energy absorption capabilities, which escalate with an increase in graphene content. Additionally, the study demonstrates a significant improvement in wear resistance, attributed to the superior mechanical properties, robust interface adhesion and effective dispersion of graphene. The use of surfactants for graphene treatment is identified as a crucial factor in these advancements, offering profound insights into the development of advanced composite materials for diverse industrial uses.

Originality/value

This study introduces a unique dispersion technique for graphene in epoxy composites, setting it apart from conventional methods. By focusing on the critical role of surfactant treatment in enhancing the mechanical properties of graphene-reinforced composites, it provides a novel insight into the optimization of impact and wear resistance.

Details

Frontiers in Engineering and Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-2499

Keywords

1 – 2 of 2