Search results

1 – 10 of over 1000
Article
Publication date: 13 September 2022

Chaitanya D.V.S.K. and Naga Satish Kumar Ch.

This study aims on a broad review of Concrete's Rheological Properties. The Concrete is a commonly used engineering material because of its exquisite mechanical interpretation…

Abstract

Purpose

This study aims on a broad review of Concrete's Rheological Properties. The Concrete is a commonly used engineering material because of its exquisite mechanical interpretation, but the addition of constituent amounts has significant effects on the concrete’s fresh properties. The workability of the concrete mixture is a short-term property, but it is anticipated to affect the concrete’s long-term property.

Design/methodology/approach

In this review, the concrete and workability definition; concrete’s rheology models like Bingham model, thixotropy model, H-B model and modified Bingham model; obtained rheological parameters of concrete; the effect of constituent’s rheological properties, which includes cement and aggregates; and the concrete’s rheological properties such as consistency, mobility, compatibility, workability and stability were studied in detail.

Findings

Also, this review study has detailed the constituents and concrete’s rheological properties effects. Moreover, it exhibits the relationship between yield stress and plastic viscosity in concrete’s rheological behavior. Hence, several methods have been reviewed, and performance has been noted. In that, the abrasion resistance concrete has attained the maximum compressive strength of 73.6 Mpa; the thixotropy approach has gained the lowest plastic viscosity at 22 Pa.s; and the model coaxial cylinder has recorded the lowest stress rate at 8 Pa.

Originality/value

This paper especially describes the possible strategies to constrain improper prediction of concrete’s rheological properties that make the workability and rheological behavior prediction simpler and more accurate. From this, future guidelines can afford for prediction of concrete rheological behavior by implementing novel enhancing numerical techniques and exploring the finest process to evaluate the workability.

Details

World Journal of Engineering, vol. 21 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 22 October 2019

Kanwar Pal Singh, Arvind Kumar and Deo Raj Kaushal

This paper aims to the transportation of high concentration slurry through pipelines that will require thorough understanding of physical and rheological properties of slurry, as…

Abstract

Purpose

This paper aims to the transportation of high concentration slurry through pipelines that will require thorough understanding of physical and rheological properties of slurry, as well as its hydraulic flow behavior. In spite of several contributions by the previous researchers, there is still a need to enrich the current understanding of hydraulic conveying through pipeline at various flow parameters. The pilot plant loop tests, particularly at high concentrations, are tedious, time-consuming and complex in nature. Therefore, in the current research the prediction methodology for slurry pipeline design based on rheological model of the slurry is used for calculation of pressure drop and other design parameters.

Design/methodology/approach

It has been established that slurry rheology plays important role in the prediction of pressure drop for laminar and turbulent flow of commercial slurries through pipeline. In the current research fly ash slurry at high concentration is chosen for rheological analysis. The effect of particle size and solid concentration is experimentally tested over the rheological behavior of slurry and based on the rheological data a correlation is developed for calculation of pressure drop in slurry pipeline.

Findings

The present study strongly supports the analytical approach of pressure drop prediction based on the rheological parameters obtained from the bench scale tests. The rheological properties are strongly influenced by particle size distribution (PSD), shear rate and solid mass concentration of the slurry samples. Pressure drop along the pipeline is highly influenced by flow velocity and solid concentration. The presence of coarser particles in the slurry samples also leads to high pressure drop along the pipeline. As the concentration of solid increase the shear stress and shear viscosity increase cause higher pressure drop.

Research limitations/implications

The transportation of slurry in the pipeline is very complex as there are lot of factors that affect the flow behavior of slurry in pipelines. From the vast study of literature it is found that flow behavior of slurry changes with the change in parameters such as solids concentration, flow velocity, PSD, chemical additives and so on. Therefore, the accurate prediction of hydraulic parameter is very difficult. Different slurry samples behave differently depending upon their physical and rheological characteristics. So it is required to study each slurry samples individually that is time-consuming and costly.

Practical implications

Nowadays in the world, long distance slurry pipelines are used for the transportation of highly concentration slurries. Many researchers have carried out an experiment in the design aspects of hydraulic transportation system. Rheological characteristics of slurry also play crucial role in determining important parameters of hydraulic conveying such as head loss in commercial slurry pipeline. The current research is useful for the prediction of pressure drop based on rheological behavior of fly ash slurry at various solid concentrations. The current research is helpful for finding the effect of solid concentration and flow velocity on the flow behavior of slurry.

Social implications

Slurry pipeline transportation has advantages over rail and road transportation because of low energy consumption, economical, less maintenance and eco-friendly nature. Presently majority of the thermal power plants in India and other parts of the world dispose of coal ash at low concentration (20 per cent by weight) to ash ponds using the slurry pipeline. Transporting solids in slurry pipelines at higher concentrations will require a thorough knowledge of pressure drop. In the current research a rheological model is proposed for prediction of pressure drop in the slurry pipeline, which is useful for optimization of flow parameters.

Originality/value

All the experimental work is done on fly ash slurry samples collect from the Jharli thermal power plant from Haryana State of India. Bench scale tests are performed in the water resource laboratory of IIT Delhi for physical and rheological analysis of slurry. It has been shown in the results that up to solid concentration of 50 per cent by mass all the samples behave as non-Newtonian and follows a Herschel–Bulkley model with shear thickening behavior. In the present research all the result outcomes are unique and original and does not copied from anywhere.

Details

World Journal of Engineering, vol. 16 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 3 April 2019

Zhen Li, Xiaoli Zhao, Dezhi Zheng, Tingjian Wang, Le Gu and Liqin Wang

This study aims to evaluate the rheological properties of aviation lubricating oil under conditions of heavy load, high speed and high temperature and the applicability of the…

Abstract

Purpose

This study aims to evaluate the rheological properties of aviation lubricating oil under conditions of heavy load, high speed and high temperature and the applicability of the classical rheological model under severe conditions.

Design/methodology/approach

A Chinese aviation lubricating oil was used and its traction curves were obtained using a new two-disk tribotester. Its rheological parameters were calculated based on empirical formulae. Moreover, the traction force was calculated based on the classical Eyring rheological model.

Findings

The traction curves are obtained with respect to contact pressure, temperature and rolling speed. The rheological parameters are significantly influenced by environmental factors, especially viscosity. The traction force calculated using the Eyring model is consistent with the experimental results.

Originality/value

A novel two-disk tribotester was designed using a gas bearing and speed–force closed-loop control to ensure measurement accuracy. The mechanism of rheological properties was analyzed and the applicability of the classical rheological model under severe conditions was verified. It provided an experimental and theoretical basis for expanding the application of classical rheological models under extreme conditions.

Details

Industrial Lubrication and Tribology, vol. 71 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 29 November 2021

Guangyuan Wu, Haitao Zhang, Junfeng Sun and Tengjiang Yu

In order to evaluate the rheological properties of asphalt more comprehensively and effectively, and to explore and discuss the practicability of relevant models in the evaluation…

Abstract

Purpose

In order to evaluate the rheological properties of asphalt more comprehensively and effectively, and to explore and discuss the practicability of relevant models in the evaluation of the rheological properties of asphalt.

Design/methodology/approach

Based on the rheological and viscoelastic theories, temperature scanning, frequency scanning and multiple stress creep recovery (MSCR) tests of different modified asphalt were carried out by dynamic shear rheometer (DSR) to obtain relevant viscoelastic parameters and evaluate the high temperature properties of different modified asphalt. Based on the time-temperature equivalence principle, the main curve was constructed to study the viscoelastic properties of asphalt in a wider frequency domain. The main curve was fitted with the CAM model, and the rheological properties of different modified asphalt were evaluated through the analysis of model parameters. The creep stiffness and creep velocity of different modified asphalt were obtained through the rheological test of bending beam (BBR), and the low-temperature performance of different modified asphalt was analyzed by using Burgers model to fit the creep compliance.

Findings

The results show that the high temperature rheological properties of several modified asphalt studied in the test are ranked from best to worst as follows: PE modified asphalt > SBS modified asphalt > SBR modified asphalt. Short-term aging can improve the high temperature performance of asphalt, and different types of modifiers can promote or inhibit this improvement effect. Based on BBR test and Burgers model fitting analysis, SBR modified asphalt has the best low temperature performance, followed by SBS modified asphalt, while PE modified asphalt has poor low temperature performance, so it is not suitable to be used as road material in low temperature area.

Originality/value

Combined with effective evaluation methods, the rheological properties of asphalt at different temperatures and angles were systematically evaluated, and the evolution of rheological properties of asphalt characterized by model parameters was further analyzed by advanced model simulation.

Details

Journal of Engineering, Design and Technology , vol. 21 no. 5
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 21 September 2010

S. Mallik, M. Schmidt, R. Bauer and N.N. Ekere

The purpose of this paper is to study the rheological behaviours of lead‐free solder pastes used for flip‐chip assembly applications and to correlate rheological behaviours with…

Abstract

Purpose

The purpose of this paper is to study the rheological behaviours of lead‐free solder pastes used for flip‐chip assembly applications and to correlate rheological behaviours with the printing performance.

Design/methodology/approach

A range of rheological characterization techniques including viscosity, yield stress, oscillatory and creep‐recovery tests were carried out to investigate the rheological properties and behaviours of four different solder paste formulations based on no‐clean flux composition, with different alloy composition, metal content and particle size. A series of printing tests were also conducted to correlate printing performance.

Findings

The results show that in the viscosity test, all solder pastes exhibited a shear thinning behaviour in nature with different highest maximum viscosity. The yield stress test has been used to study the effect of temperature on the flow behaviour of solder pastes. A decrease in yield stress value with temperature was observed. The results from the oscillatory test were used to study the solid‐ and liquid‐like behaviours of solder pastes. Creep‐recovery testing showed that the solder paste with smaller particle size exhibited less recovery.

Research limitations/implications

More extensive research is needed to simulate the paste‐roll, aperture‐filling and aperture‐emptying stages of the stencil printing process using rheological test methods.

Practical implications

Implementation of these rheological characterization procedures in product development, process optimization and quality control can contribute significantly to reducing defects in the assembly of flip‐chip devices and subsequently increasing the production yield.

Originality/value

The paper shows how the viscosity, yield stress, oscillatory and creep‐recovery test methods can be successfully used to characterize the flow behaviour of solder pastes and also to predict their performance during the stencil printing process.

Details

Soldering & Surface Mount Technology, vol. 22 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 5 July 2011

Haili Zhang, Fuzhen Tian, Song Chen, Qinghua Guo, Fen Liu and Donglan Sun

The purpose of this paper is to develop a kind of novel and high‐performance rheological additive, an eco‐friendly composite of anatase nano‐TiO2 particles and xanthan gum (NTX)…

Abstract

Purpose

The purpose of this paper is to develop a kind of novel and high‐performance rheological additive, an eco‐friendly composite of anatase nano‐TiO2 particles and xanthan gum (NTX), for interior wall coatings.

Design/methodology/approach

NTX was prepared through heating and refluxing the mixture of TiO2 hydrosol and xanthan gum, and five interior wall coating samples were fabricated with different NTX contents. The morphology of nano‐TiO2 hydrosol and NTX were characterised with TEM, and the stability and rheological properties of these coating samples were studied.

Findings

TEM images showed a core‐shell structure of NTX, and that nano‐TiO2 particles in it were encapsulated by xanthan gum, which was anticipated to weaken Van der Waals force among nano‐TiO2 particles thus preventing the aggregation of nano‐particles. All of the five coating samples were found to be non‐Newtonian pseudo‐plastic fluid, and showed excellent stability and thixotropic property.

Research limitations/implications

This paper focused on the preparation, the characterisation of NTX additive and the study of the rheological behaviours of the coating samples with NTX. Some other aspects, such as coating durability, photocatalytic ability and film properties, will be studied in the future.

Practical implications

It was proven that NTX was an effective eco‐friendly rheological additive for interior wall coatings. Consequently, this paper threw light on developing eco‐friendly interior wall coatings.

Originality/value

A kind of novel and effective rheological additive was developed for interior wall coatings in the study reported in the paper. A method was also developed to introduce functional nano‐particles into coating in a good dispersion state.

Details

Pigment & Resin Technology, vol. 40 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 January 2006

Dragan D. Milasinovic

This paper is concerned with a new proposal regarding the analysis of visco‐elastoplasticity and fatigue and is based on rheological‐dynamical theory. Due to the analogy between…

Abstract

This paper is concerned with a new proposal regarding the analysis of visco‐elastoplasticity and fatigue and is based on rheological‐dynamical theory. Due to the analogy between rheological model and dynamical model with viscous damping, it becomes obvious that inelastic response of members is essentially a dynamical problem. An analytical rheological‐dynamical viscoelasto‐ plastic solution of one‐dimensional longitudinal continuous vibration under loading and solution for the stress relaxation as unloading have been developed and used to obtain the fatigue limit of thin long bars. Rheologic behavior of the bar can be characterized by one parameter, like in a single‐degree‐of‐freedom spring mass system. In all inelastic strains time rate effects are always present to some degree. Whether or not their exclusion has a significant influence on the prediction of the material fatigue behavior depends upon several factors like: maximum absolute stress in the cycle, coefficient of asymmetry of cycle, creep coefficient, slope of the strain hardening portion of the stress‐strain curve, relative frequency and uniaxial yield stress. This paper provides description of dynamic magnification factor, relaxation of stress, stress concentration and the fatigue limit of thin long symmetrical bars.

Details

Multidiscipline Modeling in Materials and Structures, vol. 2 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 11 April 2008

S. Mallik, N.N. Ekere, R. Durairaj and A.E. Marks

The purpose of this paper is to investigate the rheological behaviour of three different lead‐free solder pastes used for surface mount applications in the electronic industry.

Abstract

Purpose

The purpose of this paper is to investigate the rheological behaviour of three different lead‐free solder pastes used for surface mount applications in the electronic industry.

Design/methodology/approach

This study concerns the rheological measurements of solder paste samples and is made up of three parts. The first part deals with the measurement of rhelogical properties with three different measuring geometries, the second part looks into the effect of frequencies on oscillatory stress sweep measurements and the final part reports on the characterisation and comparison of three different types of Pb‐free solder pastes.

Findings

Among the three geometries, the serrated parallel plate was found effective in minimising the wall‐slip effect. From the oscillatory stress‐sweep data with different frequencies; it was observed that the linear visco‐elastic region is independent of frequency for all the solder paste samples. To understand the shear thinning behaviour of solder paste, the well known Cross and Carreau models were fitted to the viscosity data. Moreover, creep‐recovery and dynamic frequency‐sweep tests were also carried out without destroying the sample's structure and have yielded useful information on the pastes behaviour.

Research limitations/implications

More extensive research is needed to fully characterise the wall‐slip behaviour during the rheological measurements of solder pastes.

Practical implications

The rheological test results presented in this paper will be of important value for research and development, quality control and facilitation of the manufacturing of solder pastes and flux mediums.

Originality/value

This paper shows how wall‐slip effects can be effectively avoided during rheological measurements of solder pastes. The paper also outlines how different rheological test methods can be used to characterise solder paste behaviours.

Details

Soldering & Surface Mount Technology, vol. 20 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 8 February 2008

M.A. Delgado, J.M. Franco and E. Kuhn

The aim of this work is to investigate the relationship among rheology, tribology and traditional standardized technological parameters of lithium lubricating greases.

Abstract

Purpose

The aim of this work is to investigate the relationship among rheology, tribology and traditional standardized technological parameters of lithium lubricating greases.

Design/methodology/approach

Lubricating greases having the same composition but differing in processing protocols have been manufactured and characterized in order to isolate the rheological behaviour from the formulation.

Findings

Some successful empirical correlations between rheological (viscous and viscoelastic) and technological standardized parameters, with the friction factor obtained from a ball‐disc tribometer, have been established in order to elucidate the role of the rheological behaviour of lubricating greases on the friction process. In addition to this, an energetic evaluation of the structural degradation of greases during the friction process has been carried out by performing stress‐growth experiments. Thus, the storage energy density, which is related to the grease capacity to accumulate energy in the elastic deformation, and the limiting energy density, which represents the dissipation of energy in the flow process, have been satisfactorily correlated with the friction factor.

Research limitations/implications

The complex rheological behaviour of lubricating greases, the extreme deformations and the high‐shear stresses resulting in a tribological contact imply that it is difficult to develop a model to describe their behaviour in an elastohydrodynamic lubricating contact.

Originality/value

This paper provides a resource of practical data to be applied in tribological systems.

Details

Industrial Lubrication and Tribology, vol. 60 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 7 June 2019

Lucja Dybowska-Sarapuk, Daniel Janczak, Bartlomiej Podsiadly, Malgorzata Jakubowska and Marcin Sloma

A comparison of electric and viscosity percolation threshold is crucial from the scientific and technical points of view to understand the features and capabilities of…

Abstract

Purpose

A comparison of electric and viscosity percolation threshold is crucial from the scientific and technical points of view to understand the features and capabilities of heterogeneous graphene composite materials and properly select the functional phase volume. Therefore, the purpose of this paper is to present the analysis of the electrical and rheological percolation thresholds in the polymer–graphene screen printing pastes and the analysis of the relation between these two parameters.

Design/methodology/approach

In the paper, the properties of polymer-based pastes with graphene nanoplatelets were tested: paste viscosity and printed layers conductivity. The tests of pastes with different filler content allowed to determine both the electrical and rheological percolation thresholds using power law, according to Kirkpatrick’s percolation model.

Findings

The electrical percolation threshold for graphene nanoplatelets (GNPs) in the composite was 0.74 Vol.% when the rheological percolation threshold is observed to be at 1.00 Vol.% of nanoplatelets. The percolation threshold values calculated using the Kirkpatrick’s percolation model were 0.87 and 0.5 Vol.% of GNPs in the paste for electrical and rheological percolation thresholds, respectively.

Originality/value

Recently, GNPs are becoming more popular as the material of the functional phase in screen printing heterophase materials, because of their unique mechanical and electrical properties. However, till date no research presented in the literature is related to the direct comparison of both the electrical and rheological percolation thresholds. Such analysis is important for the optimization of the printing process toward the highest quality of printed conductive paths, and finally the best electrical properties.

Details

Circuit World, vol. 45 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

1 – 10 of over 1000