Search results

1 – 10 of 48
Article
Publication date: 6 June 2016

Bassem R Girgis, Sarma L Rani and Abdelkader Frendi

The purpose of this paper is to investigate the computational features of the Flowfield Dependent Variation (FDV) method, a numerical scheme built to simulate flows characterized…

Abstract

Purpose

The purpose of this paper is to investigate the computational features of the Flowfield Dependent Variation (FDV) method, a numerical scheme built to simulate flows characterized by multiple speeds, multiple physical phenomena, and by large variations in flow variables.

Design/methodology/approach

Fundamentally, the FDV method may be regarded as a variant of the Lax-Wendroff Scheme (LWS) that is obtained by replacing the explicit time derivatives in LWS by a weighted combination of explicit and implicit time derivatives. The weighting factors – referred to as FDV parameters – may be broadly classified as convective and diffusive parameters which, for example, are determined using flow quantities such as the Mach number and Reynolds number, respectively. Hence, the reference to these parameters and the method as “flow field dependent.” A von Neumann Fourier analysis demonstrates that the increased implicitness makes FDV both more stable and less dispersive compared to LWS, a feature crucial to capturing shocks and other phenomena characterized by high gradients in variables. In the current study, the FDV scheme is implemented in a Taylor-Galerkin-based finite element method framework that supports arbitrarily high order, unstructured isoparametric elements in one-, two- and three-dimensional geometries.

Findings

At first, the spatial accuracy of the implemented FDV scheme is established using the Method of Manufactured Solutions, wherein the results show that the order of accuracy of the scheme is nearly equal to the order of the shape function polynomial plus one. The dispersion and dissipation errors of FDV, when applied to the compressible Navier-Stokes and energy equations, are investigated using a 2-D, small-amplitude acoustic pulse propagating in a quiescent medium. It is shown that FDV with third-order shape functions accurately captures both the amplitude and phase of the acoustic pulse. The method is then applied to cases ranging from low-Mach number subsonic flows (Mach number M=0.05) to high-Mach number supersonic flows (M=4) with shock-boundary layer interactions. For all cases, fair to good agreement is observed between the current results and those in the literature.

Originality/value

The spatial order of accuracy of the FDV method, its stability and dispersive properties, as well as its applicability to low- and high-Mach number flows are established.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 February 2014

Ahad Zarghami, Stefano Ubertini and Sauro Succi

The main purpose of this paper is to develop a novel thermal lattice Boltzmann method (LBM) based on finite volume (FV) formulation. Validation of the suggested formulation is…

Abstract

Purpose

The main purpose of this paper is to develop a novel thermal lattice Boltzmann method (LBM) based on finite volume (FV) formulation. Validation of the suggested formulation is performed by simulating plane Poiseuille, backward-facing step and flow over circular cylinder.

Design/methodology/approach

For this purpose, a cell-centered scheme is used to discretize the convection operator and the double distribution function model is applied to describe the temperature field. To enhance stability, weighting factors are defined as flux correctors on a D2Q9 lattice.

Findings

The introduction of pressure-temperature-dependent flux-control coefficients in the streaming operator, in conjunction with suitable boundary conditions, is shown to result in enhanced numerical stability of the scheme. In all cases, excellent agreement with the existing literature is found and shows that the presented method is a promising scheme in simulating thermo-hydrodynamic phenomena.

Originality/value

A stable and accurate FV formulation of the thermal DDF-LBM is presented.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 August 2008

Y.Q. Zu, Y.Y. Yan, W.P. Shi and L.Q. Ren

The main objective of this work is to develop a boundary treatment in lattice Boltzmann method (LBM) for curved and moving boundaries and using this treatment to study numerically…

1548

Abstract

Purpose

The main objective of this work is to develop a boundary treatment in lattice Boltzmann method (LBM) for curved and moving boundaries and using this treatment to study numerically the flow around a rotating isothermal circular cylinder with/without heat transfer.

Design/methodology/approach

A multi‐distribution function thermal LBM model is used to simulate the flow and heat transfer around a rotating circular cylinder. To deal with the calculations on the surface of cylinder, a novel boundary treatment is developed.

Findings

The results of simulation for flow and heat transfer around a rotating cylinder including the evolution with time of velocity field, and the lift and drag coefficients are compared with those of previous theoretical, experimental and numerical studies. Excellent agreements show that present LBM including boundary treatment can achieve accurate results of flow and heat transfer. In addition, the effects of the peripheral‐to‐translating‐speed ratio, Reynolds number and Prandtl number on evolution of velocity and temperature fields around the cylinder are tested.

Practical implications

There is a large class of industrial processes which involve the motion of fluid passing rotating isothermal circular cylinders with/without heat transfer. Operations ranging from paper and textile making machines to glass and plastics processes are a few examples.

Originality/value

A strategy for LBM to treat curved and moving boundary with the second‐order accuracy for both velocity and temperature fields is presented. This kind of boundary treatment is very easy to implement and costs less in computational time.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 18 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 February 2014

Yi-Chang Wu and Chia-Ho Cheng

The analysis of power flow and mechanical efficiency constitutes an important phase in the design and analysis of gear mechanisms. The aim of this paper is to present a systematic…

Abstract

Purpose

The analysis of power flow and mechanical efficiency constitutes an important phase in the design and analysis of gear mechanisms. The aim of this paper is to present a systematic procedure for the determination of power flow and mechanical efficiency of epicyclic-type transmission mechanisms.

Design/methodology/approach

A novel epicyclic-type in-hub bicycle transmission, which is a split-power type transmission composed of two transmission units and one differential unit, and its clutching sequence table are introduced first. By using the concept of fundamental circuits, the procedure for calculating the angular speed of each link, the ideal torque and power flow of each link, the actual torque and power flow of each link determined by considering gear-mesh losses, and the mechanical efficiency of the transmission mechanism is proposed in a simple, straightforward manner. The mechanical efficiency analysis of epicyclic-type gear mechanisms is largely simplified to overcome tedious and complicated processes of traditionally methods.

Findings

An analysis of the mechanical efficiency of a four-speed automotive automatic transmission completed by Hsu and Huang is used as an example to illustrate the utility and validity of the proposed procedure. The power flow and mechanical efficiency of the presented 16-speed in-hub bicycle transmission are computed, and the power recirculation inside the transmission mechanism at each speed is detected based on the power flow diagram. When power recirculation occurs, the mechanical efficiency of the gear mechanism at the related speed reduces. The mechanical efficiency of this in-hub bicycle transmission is more than 96 percent for each speed. Such an in-hub bicycle transmission possesses reasonable kinematics and high mechanical efficiency and is therefore suitable for further embodiment design and detail design.

Originality/value

The proposed approach is suitable for the mechanical efficiency analysis of all kinds of complicated epicyclic-type transmissions with any number of degrees of freedom and facilitates a less-tedious process of determining mechanical efficiency. It is a useful tool for mechanical engineering designers to evaluate the efficiency performance of the gear mechanism before actually fabricating a prototype as well as measuring the numerical data. It also helps engineering designers to cautiously select feasible gear mechanisms to avoid those configurations with power recirculation in the preliminary design stage which may significantly reduce the time for developing novel in-hub bicycle transmissions.

Details

Engineering Computations, vol. 31 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 25 February 2014

Yi-Chang Wu and Bo-Wei Lin

The electric motor and multi-speed transmission hub are essential components for an electric bicycle. Traditionally, these two devices have been designed and manufactured…

Abstract

Purpose

The electric motor and multi-speed transmission hub are essential components for an electric bicycle. Traditionally, these two devices have been designed and manufactured independently. The purpose of this study is to propose a novel electromechanical device that artfully integrates an exterior-rotor brushless permanent-magnet (BLPM) motor into a transmission hub to become a compact structural assembly.

Design/methodology/approach

A novel design that integrates a three-phase, 20-pole/18-slot exterior-rotor BLPM motor with a multi-speed transmission hub composed of a six-link, two-degrees-of-freedom (2-DOF) compound planetary gear train (PGT) is presented in this study to overcome inherent drawbacks of existing designs. An analytical approach, based on fundamental circuits, is developed to synthesize the clutching sequences and numbers of teeth of all gears of the PGT.

Findings

The integrated device provides six forward speeds, including two underdrives, two direct drives, and two overdrives, as well as two drive modes: the motor-drive mode and the human-drive mode, for electric bicycles. The main feature of the proposed design is the spur gear teeth merged with the pole shoes of the stator to dramatically minimize the detent torque, which is an oscillatory torque that always induces vibration and acoustic noise of the BLPM motor.

Originality/value

The gear teeth on the pole shoes of the stator provide functions not only for transmission, but also act as dummy slots for adjusting the magnetostatic field of the BLPM motor to effectively reduce the detent torque. The peak value of the detent torque of the integrated design is only 9 percent of the original BLPM motor with identical magnet properties and motor dimensions. Such a feature is contributive in suppressing the vibration and acoustic noise of the electric bicycle's BLPM motor. A BLPM motor rated at 310 W and 250 r/min for the integrated device is presented and analyzed by using the commercial finite-element package Ansoft/Maxwell 2D Field Simulator.

Details

Engineering Computations, vol. 31 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 2 January 2018

Dmytro Svyetlichnyy, Michal Krzyzanowski, Robert Straka, Lukasz Lach and W. Mark Rainforth

The holistic numerical model based on cellular automata (CA) and lattice Boltzmann method (LBM) are being developed as part of an integrated modelling approach applied to study…

Abstract

Purpose

The holistic numerical model based on cellular automata (CA) and lattice Boltzmann method (LBM) are being developed as part of an integrated modelling approach applied to study the interaction of different physical mechanisms in laser-assisted additive layer manufacturing (ALM) of orthopaedic implants. Several physical events occurring in sequence or simultaneously are considered in the holistic model. They include a powder bed deposition, laser energy absorption and heating of the powder bed by the moving laser beam, leading to powder melting or sintering, fluid flow in the melted pool and flow through partly or not melted material, and solidification. The purpose of this study is to develop a structure of the holistic numerical model based on CA and LBM applicable for studying the interaction of the different physical mechanisms in ALM of orthopaedic implants. The model supposed to be compatible with the earlier developed CA-based model for the generation of the powder bed.

Design/methodology/approach

The mentioned physical events are accompanied by heat transfer in solid and liquid phases including interface heat transfer at the boundaries. The sintering/melting model is being developed using LBM as an independent numerical method for hydrodynamic simulations originated from lattice gas cellular automata. It is going to be coupled with the CA-based model of powder bed generation.

Findings

The entire laser-assisted ALM process has been analysed and divided on several stages considering the relevant physical phenomena. The entire holistic model consisting of four interrelated submodels has currently been developed to a different extent. The submodels include the CA-based model of powder bed generation, the LBM-CA-based model of heat exchange and transfer, the thermal solid-liquid interface model and the mechanical solid-liquid interface model for continuous liquid flow.

Practical implications

The results obtained can be used to explain the interaction of the different physical mechanisms in ALM, which is an intensively developing field of advanced manufacturing of metal, non-metal and composite structural parts, for instance, in bio-engineering. The proposed holistic model is considered to be a part of the integrated modelling approach being developed as a numerical tool for investigation of the co-operative relationships between multiphysical phenomena occurring in sequence or simultaneously during heating of the powder bed by the moving high energy heat source, leading to selective powder sintering or melting, fluid flow in the melted pool and through partly (or not) melted material, as well as solidification. The model is compatible with the earlier developed CA-based model for the generation of the powder bed, allowing for decrease in the numerical noise.

Originality/value

The present results are original and new for the study of the complex relationships between multiphysical phenomena occurring during ALM process based on selective laser sintering or melting, including fluid flow and heat transfer, identified as crucial for obtaining the desirable properties.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 January 2010

Y. Guo, R. Bennacer, S. Shen, D.E. Ameziani and M. Bouzidi

The purpose of this paper is to apply the lattice Boltzmann method (LBM) to simulate mixed flow, which combines natural convection for temperature difference and forced convection…

Abstract

Purpose

The purpose of this paper is to apply the lattice Boltzmann method (LBM) to simulate mixed flow, which combines natural convection for temperature difference and forced convection for lid driven, in a two‐dimensional rectangular cavity over a wide range of aspect ratios (A), Rayleigh numbers (Ra) and Reynolds numbers (Re).

Design/methodology/approach

The LBM is applied to simulate the mixed flow. A multi‐relaxation technique was used successfully. A scale order analysis helped the understanding and predicting the overall heat transfer.

Findings

In the considered lid driven cavity, the Richardson number emerges as a measure of relative importance of natural and forced convection modes on the heat transfer. An expression of the overall heat transfer depending on the cavity slender (A) is deduced. The validity of the obtained expression was checked in mixed convection under the condition of low Richardson number (Ri) and the limitation condition was deduced.

Practical implications

This paper has implications for cooling system optimization and LBM technique development.

Originality/value

This paper presents a new cooling configuration, avoiding critical situation where the opposing effect induce weak heat transfer; and a stable and fast LBM approach allowing complex geometry treatment.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 20 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 October 1940

Ing. K. Kollman

IN many types of engine the supercharger is built on to the accessory‐drive end, that is the rear of the engine, so that the supercharger shaft lies co‐axially or parallel with…

Abstract

IN many types of engine the supercharger is built on to the accessory‐drive end, that is the rear of the engine, so that the supercharger shaft lies co‐axially or parallel with the crankshaft. This has the great advantage of permitting the use of simple spur gearing, but suffers from the disadvantage that in passing through both intake and delivery section, the working fluid is subjected to several right‐angled changes in direction. In the case of the Rolls‐Royce Merlin for example, with air intakes on either side, there are 2 × 2 right‐angled bends before the inlet to the impellor is reached and two more at the delivery side. Such bends naturally involve losses in supercharging which should definitely be avoided. Hence in Germany in the two liquid‐cooled inline types the Jumo 211 (Fig. 1) and Mercedes‐Benz DB600 (Fig. 2) the supercharger shaft is built square to the engine crankshaft and the supercharger located at the side of the transmission casing, so that a single right‐angled bend suffices to change the direction of flow of intake air from that of flight and lead it axially to the impellor. If, at the same time, care is taken in nacelle design to ensure an undisturbed flow of air to the intake duct, then the total static head of flight may be utilized in supercharging the engine, resulting in an increased altitude rating. The proportion of this increase due to full utilization of the flight static head is shown in Fig. 3. For example, at a speed of 600 km.p.h. (373 m.p.h.) its value is about 1,400 m. (4,600 ft.)

Details

Aircraft Engineering and Aerospace Technology, vol. 12 no. 10
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 January 2014

Oluyinka O. Bamiro and William W. Liou

The purpose of the current paper is to develop a numerical methodology, based on the immersed boundary-lattice Boltzmann computational framework, for the Neumann and Dirichlet…

Abstract

Purpose

The purpose of the current paper is to develop a numerical methodology, based on the immersed boundary-lattice Boltzmann computational framework, for the Neumann and Dirichlet boundary conditions in problems involving natural and forced convection heat transfer.

Design/methodology/approach

The direct forcing immersed boundary method is extended to study the heat transfer by incompressible flow within the thermal lattice Boltzmann method (LBM) computational framework. The direct forcing and heating immersed boundary-LBM introduces a heat source term to the thermal LBM to account for the heat transfer occurring at the immersed boundary. New numerical treatments for the Neumann type of boundary condition and for the calculation of the local Nusselt number are developed. The developed methodologies have been applied to flows around immersed bodies with natural and forced convection, including steady as well as unsteady flows.

Findings

Numerical experiments involving immersed bodies in natural and forced convection have been performed in order to assess the validity of the direct heating IB-LBM. The flow cases studied also include steady and transient flow phenomena. Flow velocity field and isotherms have been used for qualitative comparisons with existing, published results. The surface averaged Nusselt number, Strouhal number, and lift coefficient (for the unsteady flow cases) have been used for quantitative comparison with published results. The results show that there are satisfactory agreements, qualitatively and quantitatively, between the results obtained by using the present method and those previously published.

Originality/value

Limited application of immersed boundary to thermal flows within the LBM has been studied by researchers; the few past studies were limited to Dirichlet boundary conditions and/or using of feedback forcing and heating approaches. In the current paper, the direct forcing and heating approach was used which helps to eliminate the arbitrary constants used in the feedback approaches. The developed new numerical treatments for the Neumann type of boundary condition and for the calculation of the local Nusselt number eliminate the need to determine surface normal and temperature gradient in the normal direction for heat transfer calculation, which is particularly beneficial in cases with deforming or changing boundaries.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Book part
Publication date: 24 May 2007

Frederic Carluer

“It should also be noted that the objective of convergence and equal distribution, including across under-performing areas, can hinder efforts to generate growth. Contrariwise

Abstract

“It should also be noted that the objective of convergence and equal distribution, including across under-performing areas, can hinder efforts to generate growth. Contrariwise, the objective of competitiveness can exacerbate regional and social inequalities, by targeting efforts on zones of excellence where projects achieve greater returns (dynamic major cities, higher levels of general education, the most advanced projects, infrastructures with the heaviest traffic, and so on). If cohesion policy and the Lisbon Strategy come into conflict, it must be borne in mind that the former, for the moment, is founded on a rather more solid legal foundation than the latter” European Commission (2005, p. 9)Adaptation of Cohesion Policy to the Enlarged Europe and the Lisbon and Gothenburg Objectives.

Details

Managing Conflict in Economic Convergence of Regions in Greater Europe
Type: Book
ISBN: 978-1-84950-451-5

1 – 10 of 48