Search results

11 – 20 of over 4000
Article
Publication date: 27 November 2018

Souhil Mouassa and Tarek Bouktir

In the vast majority of published papers, the optimal reactive power dispatch (ORPD) problem is dealt as a single-objective optimization; however, optimization with a single…

Abstract

Purpose

In the vast majority of published papers, the optimal reactive power dispatch (ORPD) problem is dealt as a single-objective optimization; however, optimization with a single objective is insufficient to achieve better operation performance of power systems. Multi-objective ORPD (MOORPD) aims to minimize simultaneously either the active power losses and voltage stability index, or the active power losses and the voltage deviation. The purpose of this paper is to propose multi-objective ant lion optimization (MOALO) algorithm to solve multi-objective ORPD problem considering large-scale power system in an effort to achieve a good performance with stable and secure operation of electric power systems.

Design/methodology/approach

A MOALO algorithm is presented and applied to solve the MOORPD problem. Fuzzy set theory was implemented to identify the best compromise solution from the set of the non-dominated solutions. A comparison with enhanced version of multi-objective particle swarm optimization (MOEPSO) algorithm and original (MOPSO) algorithm confirms the solutions. An in-depth analysis on the findings was conducted and the feasibility of solutions were fully verified and discussed.

Findings

Three test systems – the IEEE 30-bus, IEEE 57-bus and large-scale IEEE 300-bus – were used to examine the efficiency of the proposed algorithm. The findings obtained amply confirmed the superiority of the proposed approach over the multi-objective enhanced PSO and basic version of MOPSO. In addition to that, the algorithm is benefitted from good distributions of the non-dominated solutions and also guarantees the feasibility of solutions.

Originality/value

The proposed algorithm is applied to solve three versions of ORPD problem, active power losses, voltage deviation and voltage stability index, considering large -scale power system IEEE 300 bus.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 38 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 November 2021

Abdalhakem Alkhadashi, Fouad Mohammad, Rasheedah Olamide Zubayr, Hynda Aoun Klalib and Piotr Balik

The optimality objectives are the structure weight and embodied energy as well as calculating the cost and embodied carbon of the resulting optimum options. Three optimality…

Abstract

Purpose

The optimality objectives are the structure weight and embodied energy as well as calculating the cost and embodied carbon of the resulting optimum options. Three optimality algorithms developed in MATLAB, namely, genetic algorithms (GA), particle swarm optimisation (PSO) and harmony search algorithm (HSA), were used for structural optimisation to compare the effectiveness of the algorithms. Two life-cycle stages were considered, production and construction stages, which include three boundaries: materials, transportation and erection. In the formulation of the optimum design problem, 107 universal steel beams (UKB) and 64 columns (UKC) sections were considered for the discrete design variables. The imposed behavioural constraints in the optimum design process were set according to the provision of Eurocode 3 (EC3). The study aims to find the optimum solution of 2D steel frames whilst considering weight and embodied energy, investigate the performance of the analysis integrated with MATLAB and provide three examples to which all these are applied to.

Design/methodology/approach

Undoubtedly, in structural engineering, the best design of any structure aims at the most economical and environmental option, without impairing the functional and its structural integrity. In the paper, multi-objective stochastic search methods are proposed for optimum design of three two-dimensional multi-story frames.

Findings

Results showed that the optimised designs obtained by HSA are better than those found by the GA and PSO with an average difference of 16% from GA and PSO, where this difference increases at larger frame structures. It was, therefore, concluded that the integration of the analysis, design and optimisation methods employed in MATLAB can be effective in obtaining prompt optimum results during the decision-making stage.

Research limitations/implications

There may be some possible limitations in the study. Due to the time constraints, only three meta-heuristic approaches were investigated, where more methods should be investigated to fully understand their effectiveness in multi-objective problems.

Originality/value

Investigating the performance of three optimisation methods in multi-objective problems developed in MATLAB. More importantly, developing optimisation models for evaluation of embodied energy, embodied carbon and cost for steel structures to assist designers, during the initial stages, to evaluate design decisions against their energy consumption and carbon impacts.

Details

International Journal of Structural Integrity, vol. 13 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 16 April 2018

Fábio Monteiro Conde, Pedro Gonçalves Coelho, Rodrigo Paiva Tavares, Pedro Castro Camanho, José Miranda Guedes and Helder Carriço Rodrigues

This study aims to achieve a “pseudo-ductile” behaviour in the response of hybrid fibre reinforced composites under uniaxial traction by solving properly formulated optimization

139

Abstract

Purpose

This study aims to achieve a “pseudo-ductile” behaviour in the response of hybrid fibre reinforced composites under uniaxial traction by solving properly formulated optimization problems.

Design/methodology/approach

The composite material model is based on the combination of different types of fibres (with different failure strains or strengths) embedded in a polymer matrix. The composite failure under tensile load is predicted by analytical models. An optimization problem formulation is proposed and a Genetic Algorithm is used. Multi-objective optimization problems balancing failure strength and ductility criteria are solved providing optimal mixtures of fibres whose properties may come either from a pre-defined list of materials, currently available in the market, or simply assuming their continuum variation within predefined bounds, in an attempt to attain unprecedented performance levels.

Findings

Optimal solutions of hybrid fibre reinforced composites exhibiting pseudo-ductile behaviour are presented. It is found that a fibre made from a material exhibiting relatively low stiffness combined with high strength is preferred for hybridization. Furthermore, the ratio of the average failure/critical strains between the low and high elongation fibres to be hybridized must be equal or greater than two.

Originality/value

Typically, a ductile failure is an inherent property of metals, that is, their typical response curve after the linear (elastic) region exhibits a yielding plateau still followed by an increase in stress till collapse. In stark contrast, composite materials exhibit (under some loading conditions) brittle failure that may limit their widespread usage. Therefore, a “pseudo-ductility” in composites is valued and targeted through optimization which is the main original contribution here.

Details

Engineering Computations, vol. 35 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 11 January 2018

Rajali Maharjan and Shinya Hanaoka

The purpose of this paper is to develop a mathematical model that determines the location of temporary logistics hubs (TLHs) for disaster response and proposes a new method to…

1211

Abstract

Purpose

The purpose of this paper is to develop a mathematical model that determines the location of temporary logistics hubs (TLHs) for disaster response and proposes a new method to determine weights of the objectives in a multi-objective optimization problem. The research is motivated by the importance of TLHs and the complexity that surrounds the determination of their location.

Design/methodology/approach

A multi-period multi-objective model with multi-sourcing is developed to determine the location of the TLHs. A fuzzy factor rating system (FFRS) under the group decision-making (GDM) condition is then proposed to determine the weights of the objectives when multiple decision makers exist.

Findings

The interview with decision makers shows the heterogeneity of decision opinions, thus substantiating the importance of GDM. The optimization results provide useful managerial insights for decision makers by considering the trade-off between two non-commensurable objectives.

Research limitations/implications

In this study, decision makers are considered to be homogeneous, which might not be the case in reality. This study does not consider the stochastic nature of relief demand.

Practical implications

The outcomes of this study are valuable to decision makers for relief distribution planning. The proposed FFRS approach reveals the importance of involving multiple decision makers to enhance sense of ownership of established TLHs.

Originality/value

A mathematical model highlighting the importance of multi-sourcing and short operational horizon of TLHs is developed. A new method is proposed and implemented to determine the weights of the objectives. To the best of the authors’ knowledge, the multi-actor and multi-objective aspects of the TLH location problem have not thus far been considered simultaneously for one particular problem in humanitarian logistics.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. 8 no. 1
Type: Research Article
ISSN: 2042-6747

Keywords

Article
Publication date: 7 January 2020

Yuliya Pleshivtseva, Edgar Rapoport, Bernard Nacke, Alexander Nikanorov, Paolo Di Barba, Michele Forzan, Elisabetta Sieni and Sergio Lupi

This paper aims to investigate different multi-objective optimization (MOO) approaches for design and control of electromagnetic devices. The main goal of MOO is to find the set…

Abstract

Purpose

This paper aims to investigate different multi-objective optimization (MOO) approaches for design and control of electromagnetic devices. The main goal of MOO is to find the set of design variables or control parameters which will provide the best possible values of typical conflicting objective functions.

Design/methodology/approach

In the research studies, standard genetic algorithm (GA), non-dominated sorting GA (NSGA-II), migration NSGA algorithm and alternance method of optimal control theory are discussed and compared.

Findings

The test practical problems of multi-criteria optimization of induction heating processes with respect to chosen quality criteria confirm the effectiveness of application of considered MOO approaches both for the problems of design and control.

Originality/value

This paper represents and investigates different MOO approaches for design and control of electrotechnological systems.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 39 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 10 April 2007

S. Carcangiu, P. Di Barba, A. Fanni, M.E. Mognaschi and A. Montisci

The aim of the paper is to compare two different approaches to multi‐objective optimisation in magnetostatics; in this way, the case study is investigated as a possible benchmark.

Abstract

Purpose

The aim of the paper is to compare two different approaches to multi‐objective optimisation in magnetostatics; in this way, the case study is investigated as a possible benchmark.

Design/methodology/approach

A Tabu search method modified with ε‐constraint algorithm is compared with a multi‐objective multi‐individual evolution strategy. The case study is the automated shape design of a magnetic pole. In order to reduce the computational cost of solving the direct problem, which requires repeated analyses of the magnetic field, a neural network has been used to approximate the objective functions that depend on the design variables.

Findings

An approximation of the Pareto front for each method is obtained. A twofold comparison between the two methods is made, based on both the result accuracy and the computational cost.

Originality/value

Two different methods were already tested on a case study proposed as a benchmark for multi‐objective optimization in magnetostatics. The paper represents a contribution to bridge the gap between analytical and numerical benchmarks in electromagnetism.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 26 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 April 2019

Arulraj Rajendran and Kumarappan Narayanan

This paper aims to optimally plan distributed generation (DG) and capacitor in distribution network by optimizing multiple conflicting operational objectives simultaneously so as…

Abstract

Purpose

This paper aims to optimally plan distributed generation (DG) and capacitor in distribution network by optimizing multiple conflicting operational objectives simultaneously so as to achieve enhanced operation of distribution system. The multi-objective optimization problem comprises three important objective functions such as minimization of total active power loss (Plosstotal), reduction of voltage deviation and balancing of current through feeder sections.

Design/methodology/approach

In this study, a hybrid configuration of weight improved particle swarm optimization (WIPSO) and gravitational search algorithm (GSA) called hybrid WIPSO-GSA algorithm is proposed in multi-objective problem domain. To solve multi-objective optimization problem, the proposed hybrid WIPSO-GSA algorithm is integrated with two components. The first component is fixed-sized archive that is responsible for storing a set of non-dominated pareto optimal solutions and the second component is a leader selection strategy that helps to update and identify the best compromised solution from the archive.

Findings

The proposed methodology is tested on standard 33-bus and Indian 85-bus distribution systems. The results attained using proposed multi-objective hybrid WIPSO-GSA algorithm provides potential technical and economic benefits and its best compromised solution outperforms other commonly used multi-objective techniques, thereby making it highly suitable for solving multi-objective problems.

Originality/value

A novel multi-objective hybrid WIPSO-GSA algorithm is proposed for optimal DG and capacitor planning in radial distribution network. The results demonstrate the usefulness of the proposed technique in improved distribution system planning and operation and also in achieving better optimized results than other existing multi-objective optimization techniques.

Details

International Journal of Energy Sector Management, vol. 13 no. 1
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 25 July 2019

S. Khodaygan

The purpose of this paper is to present a novel Kriging meta-model assisted method for multi-objective optimal tolerance design of the mechanical assemblies based on the operating…

Abstract

Purpose

The purpose of this paper is to present a novel Kriging meta-model assisted method for multi-objective optimal tolerance design of the mechanical assemblies based on the operating conditions under both systematic and random uncertainties.

Design/methodology/approach

In the proposed method, the performance, the quality loss and the manufacturing cost issues are formulated as the main criteria in terms of systematic and random uncertainties. To investigate the mechanical assembly under the operating conditions, the behavior of the assembly can be simulated based on the finite element analysis (FEA). The objective functions in terms of uncertainties at the operating conditions can be modeled through the Kriging-based metamodeling based on the obtained results from the FEA simulations. Then, the optimal tolerance allocation procedure is formulated as a multi-objective optimization framework. For solving the multi conflicting objectives optimization problem, the multi-objective particle swarm optimization method is used. Then, a Shannon’s entropy-based TOPSIS is used for selection of the best tolerances from the optimal Pareto solutions.

Findings

The proposed method can be used for optimal tolerance design of mechanical assemblies in the operating conditions with including both random and systematic uncertainties. To reach an accurate model of the design function at the operating conditions, the Kriging meta-modeling is used. The efficiency of the proposed method by considering a case study is illustrated and the method is verified by comparison to a conventional tolerance allocation method. The obtained results show that using the proposed method can lead to the product with a more robust efficiency in the performance and a higher quality in comparing to the conventional results.

Research limitations/implications

The proposed method is limited to the dimensional tolerances of components with the normal distribution.

Practical implications

The proposed method is practically easy to be automated for computer-aided tolerance design in industrial applications.

Originality/value

In conventional approaches, regardless of systematic and random uncertainties due to operating conditions, tolerances are allocated based on the assembly conditions. As uncertainties can significantly affect the system’s performance at operating conditions, tolerance allocation without including these effects may be inefficient. This paper aims to fill this gap in the literature by considering both systematic and random uncertainties for multi-objective optimal tolerance design of mechanical assemblies under operating conditions.

Article
Publication date: 7 July 2020

Golak Bihari Mahanta, Deepak BBVL, Bibhuti B. Biswal and Amruta Rout

From the past few decades, parallel grippers are used successfully in the automation industries for performing various pick and place jobs due to their simple design, reliable…

Abstract

Purpose

From the past few decades, parallel grippers are used successfully in the automation industries for performing various pick and place jobs due to their simple design, reliable nature and its economic feasibility. So, the purpose of this paperis to design a suitable gripper with appropriate design parameters for better performance in the robotic production systems.

Design/methodology/approach

In this paper, an enhanced multi-objective ant lion algorithm is introduced to find the optimal geometric and design variables of a parallel gripper. The considered robotic gripper systems are evaluated by considering three objective functions while satisfying eight constraint equations. The beta distribution function is introduced for generating the initial random number at the initialization phase of the proposed algorithm as a replacement of uniform distribution function. A local search algorithm, namely, achievement scalarizing function with multi-criteria decision-making technique and beta distribution are used to enhance the existing optimizer to evaluate the optimal gripper design problem. In this study, the newly proposed enhanced optimizer to obtain the optimum design condition of the design variables is called enhanced multi-objective ant lion optimizer.

Findings

This study aims to obtain optimal design parameters of the parallel gripper with the help of the developed algorithms. The acquired results are investigated with the past research paper conducted in that field for comparison. It is observed that the suggested method to get the best gripper arrangement and variables of the parallel gripper mechanism outperform its counterparts. The effects of the design variables are needed to be studied for a better design approach concerning the objective functions, which is achieved by sensitivity analysis.

Practical implications

The developed gripper is feasible to use in the assembly operation, as well as in other pick and place operations in different industries.

Originality/value

In this study, the problem to find the optimum design parameter (i.e. geometric parameters such as length of the link and parallel gripper joint angles) is addressed as a multi-objective optimization. The obtained results from the execution of the algorithm are evaluated using the performance indicator algorithm and a sensitivity analysis is introduced to validate the effects of the design variables. The obtained optimal parameters are used to develop a gripper prototype, which will be used for the assembly process.

Details

Assembly Automation, vol. 40 no. 5
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 4 October 2011

Nikhil Padhye and Kalyanmoy Deb

The goal of this study is to carry out multi‐objective optimization by considering minimization of surface roughness (Ra) and build time (T) in selective laser sintering (SLS…

1457

Abstract

Purpose

The goal of this study is to carry out multi‐objective optimization by considering minimization of surface roughness (Ra) and build time (T) in selective laser sintering (SLS) process, which are functions of “build orientation”. Evolutionary algorithms are applied for this purpose. The performance comparison of the optimizers is done based on statistical measures. In order to find truly optimal solutions, local search is proposed. An important task of decision making, i.e. the selection of one solution in the presence of multiple trade‐off solutions, is also addressed. Analysis of optimal solutions is done to gain insight into the problem behavior.

Design/methodology/approach

The minimization of Ra and T is done using two popular optimizers – multi‐objective genetic algorithm (non‐dominated sorting genetic algorithm (NSGA‐II)) and multi‐objective particle swarm optimizers (MOPSO). Standard measures from evolutionary computation – “hypervolume measure” and “attainment surface approximator” have been borrowed to compare the optimizers. Decision‐making schemes are proposed in this paper based on decision theory.

Findings

The objects are categorized into groups, which bear similarity in optimal solutions. NSGA‐II outperforms MOPSO. The similarity of spread and convergence patterns of NSGA‐II and MOPSO ensures that obtained solutions are (or are close to) Pareto‐optimal set. This is validated by local search. Based on the analysis of obtained solutions, general trends for optimal orientations (depending on the geometrical features) are found.

Research limitations/implications

A novel and systematic way to address multi‐objective optimization decision‐making post‐optimal analysis is shown. Simulations utilize experimentally derived models for roughness and build time. A further step could be the experimental verification of findings provided in this study.

Practical implications

This study provides a thorough methodology to find optimal build orientations in SLS process. A route to decipher valuable problem information through post‐optimal analysis is shown. The principles adopted in this study are general and can be extended to other rapid prototyping (RP) processes and expected to find wide applicability.

Originality/value

This paper is a distinct departure from past studies in RP and demonstrates the concepts of multi‐objective optimization, decision‐making and related issues.

Details

Rapid Prototyping Journal, vol. 17 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

11 – 20 of over 4000