Search results

1 – 10 of 442
Article
Publication date: 6 October 2023

Fugang Zhai, Shengnan Li and Yangtao Xing

This paper aims to study the motion trajectory of the oil seal for shaft in eccentric state and derive equation of lip motion trajectory.

Abstract

Purpose

This paper aims to study the motion trajectory of the oil seal for shaft in eccentric state and derive equation of lip motion trajectory.

Design/methodology/approach

This paper analyzes the force during the motion of the eccentric lip by considering the material viscoelasticity, and a cam-plate mechanism is established as an equivalent model for the motion between the shaft and the lip; according to this, the equation of lip motion trajectory is derived.

Findings

The trajectory of the lip lags that of the shaft in the eccentric state because the viscoelasticity-affected lip recovery velocity is lower than the shaft recovery speed. The lip trajectory enters the lag phase earlier and the lag phase’s duration is longer with the increase of the eccentricity and rotational speed, because the deviation of the recovery velocities between the lip and the shaft will be exacerbated.

Originality/value

Innovatively, by considering the viscoelasticity of the material, the cam-plate mechanism is used to equivalent the motion of the shaft-lip to derive the equation for the radial motion trajectory of the eccentric lip. The regularity of lip motion is the key to determining the performance of oil seals, and the eccentric lip trajectory research method revealed in this paper provides a research basis for the performance research and optimization of eccentric oil seals.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-06-2023-0161/

Details

Industrial Lubrication and Tribology, vol. 75 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 11 January 2024

Yuepeng Zhang, Guangzhong Cao, Linglong Li and Dongfeng Diao

The purpose of this paper is to design a new trajectory error compensation method to improve the trajectory tracking performance and compliance of the knee exoskeleton in…

Abstract

Purpose

The purpose of this paper is to design a new trajectory error compensation method to improve the trajectory tracking performance and compliance of the knee exoskeleton in human–exoskeleton interaction motion.

Design/methodology/approach

A trajectory error compensation method based on admittance-extended Kalman filter (AEKF) error fusion for human–exoskeleton interaction control. The admittance controller is used to calculate the trajectory error adjustment through the feedback human–exoskeleton interaction force, and the actual trajectory error is obtained through the encoder feedback of exoskeleton and the designed trajectory. By using the fusion and prediction characteristics of EKF, the calculated trajectory error adjustment and the actual error are fused to obtain a new trajectory error compensation, which is feedback to the knee exoskeleton controller. This method is designed to be capable of improving the trajectory tracking performance of the knee exoskeleton and enhancing the compliance of knee exoskeleton interaction.

Findings

Six volunteers conducted comparative experiments on four different motion frequencies. The experimental results show that this method can effectively improve the trajectory tracking performance and compliance of the knee exoskeleton in human–exoskeleton interaction.

Originality/value

The AEKF method first uses the data fusion idea to fuse the estimated error with measurement errors, obtaining more accurate trajectory error compensation for the knee exoskeleton motion control. This work provides great benefits for the trajectory tracking performance and compliance of lower limb exoskeletons in human–exoskeleton interaction movements.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 10 May 2022

Priyaranjan Biswal and Prases Kumar Mohanty

Legged walking robots have numerous advantages over the wheel or tracked robots due to their strong operational ability and exposure to the complex environment. This paper aims to…

Abstract

Purpose

Legged walking robots have numerous advantages over the wheel or tracked robots due to their strong operational ability and exposure to the complex environment. This paper aims to present details about the mechanical formation and a new conceptual elliptical trajectory generation discussed throughout the paper of the quadruped robot.

Design/methodology/approach

Initially, a realistic CAD model of the four-legged robot is developed in Solidwork-2019. The proposed model’s forward and inverse kinematics equations are deduced using Denavit–Hartenberg parameters. Based on geometry and kinematics, manipulability and obstacle avoidance are investigated. A method of galloping trajectory is proposed for aiming the increase of upright direction impulse, which is produced by ground reaction force at each step frequency. Furthermore, the locomotion equation of the ellipse trajectory is derived by setting transition angle polynomial of free-fall phase, stance phase and swing phase and the constraints.

Findings

Finally, a successive simulation on a 2D sagittal plane is performed to check and verify the usefulness of the proposed trajectory. Before the development of the full quadruped, a single prototype leg is generated for experimental verification of the dynamic simulations.

Originality/value

The proposed trajectory is novel in that it uses force tracking control, which is intended to improve the quadruped robot’s robustness and stability.

Details

World Journal of Engineering, vol. 20 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 23 November 2022

Chetan Jalendra, B.K. Rout and Amol Marathe

Industrial robots are extensively used in the robotic assembly of rigid objects, whereas the assembly of flexible objects using the same robot becomes cumbersome and challenging…

Abstract

Purpose

Industrial robots are extensively used in the robotic assembly of rigid objects, whereas the assembly of flexible objects using the same robot becomes cumbersome and challenging due to transient disturbance. The transient disturbance causes vibration in the flexible object during robotic manipulation and assembly. This is an important problem as the quick suppression of undesired vibrations reduces the cycle time and increases the efficiency of the assembly process. Thus, this study aims to propose a contactless robot vision-based real-time active vibration suppression approach to handle such a scenario.

Design/methodology/approach

A robot-assisted camera calibration method is developed to determine the extrinsic camera parameters with respect to the robot position. Thereafter, an innovative robot vision method is proposed to identify a flexible beam grasped by the robot gripper using a virtual marker and obtain the dimension, tip deflection as well as velocity of the same. To model the dynamic behaviour of the flexible beam, finite element method (FEM) is used. The measured dimensions, tip deflection and velocity of a flexible beam are fed to the FEM model to predict the maximum deflection. The difference between the maximum deflection and static deflection of the beam is used to compute the maximum error. Subsequently, the maximum error is used in the proposed predictive maximum error-based second-stage controller to send the control signal for vibration suppression. The control signal in form of trajectory is communicated to the industrial robot controller that accommodates various types of delays present in the system.

Findings

The effectiveness and robustness of the proposed controller have been validated using simulation and experimental implementation on an Asea Brown Boveri make IRB 1410 industrial robot with a standard low frame rate camera sensor. In this experiment, two metallic flexible beams of different dimensions with the same material properties have been considered. The robot vision method measures the dimension within an acceptable error limit i.e. ±3%. The controller can suppress vibration amplitude up to approximately 97% in an average time of 4.2 s and reduces the stability time up to approximately 93% while comparing with control and without control suppression time. The vibration suppression performance is also compared with the results of classical control method and some recent results available in literature.

Originality/value

The important contributions of the current work are the following: an innovative robot-assisted camera calibration method is proposed to determine the extrinsic camera parameters that eliminate the need for any reference such as a checkerboard, robotic assembly, vibration suppression, second-stage controller, camera calibration, flexible beam and robot vision; an approach for robot vision method is developed to identify the object using a virtual marker and measure its dimension grasped by the robot gripper accommodating perspective view; the developed robot vision-based controller works along with FEM model of the flexible beam to predict the tip position and helps in handling different dimensions and material types; an approach has been proposed to handle different types of delays that are part of implementation for effective suppression of vibration; proposed method uses a low frame rate and low-cost camera for the second-stage controller and the controller does not interfere with the internal controller of the industrial robot.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 24 April 2024

Aymen Khadr

This paper focuses on the application of a robotic technique for modeling a three-wheeled mobile robot (WMR), considering it as a multibody polyarticulated system. Then the…

Abstract

Purpose

This paper focuses on the application of a robotic technique for modeling a three-wheeled mobile robot (WMR), considering it as a multibody polyarticulated system. Then the dynamic behavior of the developed model is verified using a physical model obtained by Simscape Multibody.

Design/methodology/approach

Firstly, a geometric model is developed using the modified Denavit–Hartenberg method. Then the dynamic model is derived using the algorithm of Newton–Euler. The developed model is performed for a three-wheeled differentially driven robot, which incorporates the slippage of wheels by including the Kiencke tire model to take into account the interaction of wheels with the ground. For the physical model, the mobile robot is designed using Solidworks. Then it is exported to Matlab using Simscape Multibody. The control of the WMR for both models is realized using Matlab/Simulink and aims to ensure efficient tracking of the desired trajectory.

Findings

Simulation results show a good similarity between the two models and verify both longitudinal and lateral behaviors of the WMR. This demonstrates the effectiveness of the developed model using the robotic approach and proves that it is sufficiently precise for the design of control schemes.

Originality/value

The motivation to adopt this robotic approach compared to conventional methods is the fact that it makes it possible to obtain models with a reduced number of operations. Furthermore, it allows the facility of implementation by numerical or symbolical programming. This work serves as a reference link for extending this methodology to other types of mobile robots.

Details

International Journal of Intelligent Unmanned Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 16 April 2024

Yang Liu, Xiang Huang, Shuanggao Li and Wenmin Chu

Component positioning is an important part of aircraft assembly, aiming at the problem that it is difficult to accurately fall into the corresponding ball socket for the ball head…

Abstract

Purpose

Component positioning is an important part of aircraft assembly, aiming at the problem that it is difficult to accurately fall into the corresponding ball socket for the ball head connected with aircraft component. This study aims to propose a ball head adaptive positioning method based on impedance control.

Design/methodology/approach

First, a target impedance model for ball head positioning is constructed, and a reference positioning trajectory is generated online based on the contact force between the ball head and the ball socket. Second, the target impedance parameters were optimized based on the artificial fish swarm algorithm. Third, to improve the robustness of the impedance controller in unknown environments, a controller is designed based on model reference adaptive control (MRAC) theory and an adaptive impedance control model is built in the Simulink environment. Finally, a series of ball head positioning experiments are carried out.

Findings

During the positioning of the ball head, the contact force between the ball head and the ball socket is maintained at a low level. After the positioning, the horizontal contact force between the ball head and the socket is less than 2 N. When the position of the contact environment has the same change during ball head positioning, the contact force between the ball head and the ball socket under standard impedance control will increase to 44 N, while the contact force of the ball head and the ball socket under adaptive impedance control will only increase to 19 N.

Originality/value

In this paper, impedance control is used to decouple the force-position relationship of the ball head during positioning, which makes the entire process of ball head positioning complete under low stress conditions. At the same time, by constructing an adaptive impedance controller based on MRAC, the robustness of the positioning system under changes in the contact environment position is greatly improved.

Details

Robotic Intelligence and Automation, vol. 44 no. 2
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 12 September 2023

Ling Wang, Xiaoliang Wu, Zeng Kang, Yanfeng Gao, Xiai Chen and Binrui Wang

In traditional calibration methods of kinematics parameters of industrial robots, dozens of model parameters are identified together based on an optimization procedure. Due to…

Abstract

Purpose

In traditional calibration methods of kinematics parameters of industrial robots, dozens of model parameters are identified together based on an optimization procedure. Due to different contributions of model parameter errors to the tool center point positioning error of industrial robots, obtaining good results for all model parameters is very difficult. Therefore, the purpose of this paper is to propose a sequential calibration method specifically for transmission ratio parameters, which includes reduction ratios and coupling ratios of industrial robot joints.

Design/methodology/approach

The ABB IRB 1410 industrial robot is considered as an example in this study. The transmission ratios for each joint of the robot are identified using the spatial circle fitting method based on spatial vectors, which fit the center and radius of joint rotation with the least squares optimization algorithm. In addition, a method based on the Rodrigues’ formula is designed and presented for identifying the actual coupling ratio of the robot. Subsequently, an experiment is carried out to verify the proposed sequential calibration method of transmission ratios.

Findings

In this experiment, the actual positions of the linkages before and after joint rotations are measured by a laser tracker. Accurate results of the reduction ratios and the coupling ratios are calculated, and the results are verified experimentally. The results show that by calibrating the reduction ratios and coupling ratios of the ABB robot, the rotation angle errors of the robot joints can be reduced.

Originality/value

The authors propose a sequential calibration method for transmission ratio parameters, including reduction ratios and coupling ratios of industrial robot joints. An experiment is carried out to verify this proposed sequential calibration method. This study may be beneficial for calibrating the kinematic parameters of industrial robots and improving their positioning accuracy.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 18 July 2023

Haiyan Wang, Jiayu Fu, Li Mei, Xiangrong Xu, Shanshan Xu, Zhixiong Wang and Ri Su Na

This study aims to obtain the speed and angle during safe and comfortable standing of elderly people. With the advancement of society, it is becoming increasingly difficult for…

Abstract

Purpose

This study aims to obtain the speed and angle during safe and comfortable standing of elderly people. With the advancement of society, it is becoming increasingly difficult for the elderly to sit-to-stand (STS) independently and comfortably in a safe and comfortable manner. Safety is essentially a prerequisite for the elderly to achieve a comfortable STS. The speed, angle and power of the STS process can all affect safe STS. From the standpoint of health-care delivery and administration, comfortable STS can be realized easily by addressing the safety issues during STS.

Design/methodology/approach

This paper summarizes the research progress on speed and angle during safe and comfortable standing of older people. The authors analyzed the speed and angle of the STS using the Vicon optical gait acquisition system and plantar pressure sensor to find the appropriate angle and speed thresholds.

Findings

The center of gravity movement is a prerequisite for the elderly to achieve a comfortable STS. The authors found that the standing speed during the STS process should not be higher than 103.8 mm/s so that the elderly can stand comfortably and safely (safe and dangerous speeds are 72.8 mm/s and 125.2 mm/s). The limitations of waist angle, waist angle speed and the acceleration are also obtained.

Originality/value

This paper analyzes and summarizes the research status of speed and angle during safe and comfortable standing of elderly people, which is essentially a prerequisite for the elderly to achieve a comfortable STS. These results can lay the foundation for the development of assistive devices and related technologies that meet the needs of older adults.

Details

Robotic Intelligence and Automation, vol. 43 no. 4
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 4 March 2024

Yonghua Huang, Tuanjie Li, Yuming Ning and Yan Zhang

This paper aims to solve the problem of the inability to apply learning methods for robot motion skills based on dynamic movement primitives (DMPs) in tasks with explicit…

Abstract

Purpose

This paper aims to solve the problem of the inability to apply learning methods for robot motion skills based on dynamic movement primitives (DMPs) in tasks with explicit environmental constraints, while ensuring the reliability of the robot system.

Design/methodology/approach

The authors propose a novel DMP that takes into account environmental constraints to enhance the generality of the robot motion skill learning method. First, based on the real-time state of the robot and environmental constraints, the task space is divided into different regions and different control strategies are used in each region. Second, to ensure the effectiveness of the generalized skills (trajectories), the control barrier function is extended to DMP to enforce constraint conditions. Finally, a skill modeling and learning algorithm flow is proposed that takes into account environmental constraints within DMPs.

Findings

By designing numerical simulation and prototype demonstration experiments to study skill learning and generalization under constrained environments. The experimental results demonstrate that the proposed method is capable of generating motion skills that satisfy environmental constraints. It ensures that robots remain in a safe position throughout the execution of generation skills, thereby avoiding any adverse impact on the surrounding environment.

Originality/value

This paper explores further applications of generalized motion skill learning methods on robots, enhancing the efficiency of robot operations in constrained environments, particularly in non-point-constrained environments. The improved methods are applicable to different types of robots.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 29 September 2023

Yue Qiao, Wang Wei, Yunxiang Li, Shengzui Xu, Lang Wei, Xu Hao and Re Xia

The purpose of this paper is to introduce a motion control method for WFF-AmphiRobot, which can effectively realize the flexible motion of the robot on land, underwater and in the…

152

Abstract

Purpose

The purpose of this paper is to introduce a motion control method for WFF-AmphiRobot, which can effectively realize the flexible motion of the robot on land, underwater and in the transition zone between land and water.

Design/methodology/approach

Based on the dynamics model, the authors selected the appropriate state variables to construct the state space model of the robot and estimated the feedback state of the robot through the maximum a posteriori probability estimation. The nonlinear predictive model controller of the robot is constructed by local linearization of the model to perform closed-loop control on the overall motion of the robot. For the control problem of the terminal trajectory, using the neural rhythmic movement theory in bionics to construct a robot central pattern generator (CPG) for real-time generation of terminal trajectory.

Findings

In this paper, the motion state of WFF-AmphiRobot is estimated, and a model-based overall motion controller for the robot and an end-effector controller based on neural rhythm control are constructed. The effectiveness of the controller and motion control algorithm is verified by simulation and physical prototype motion experiments on land and underwater, and the robot can ideally complete the desired behavior.

Originality/value

The paper designed a controller for WFF-AmphiRobot. First, when constructing the robot state estimator in this paper, the robot dynamics model is introduced as the a priori estimation model, and the error compensation of the a priori model is performed by the method of maximum a posteriori probability estimation, which improves the accuracy of the state estimator. Second, for the underwater oscillation motion characteristics of the flipper, the Hopf oscillator is used as the basis, and the flipper fluctuation equation is modified and improved by the CPG signal is adapted to the flipper oscillation demand. The controller effectively controls the position error and heading angle error within the desired range during the movement of the WFF-AmphiRobot.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of 442