Search results

1 – 10 of over 1000
Article
Publication date: 12 January 2024

Jingqi Zhang, Shaohua Jiang and Xiaomin Qi

The purpose of this paper is to conduct a comprehensive study on building, fire and evacuation, so as to effectively improve the efficiency of building fire evacuation and the…

Abstract

Purpose

The purpose of this paper is to conduct a comprehensive study on building, fire and evacuation, so as to effectively improve the efficiency of building fire evacuation and the management level of fire evacuation site. Make up for the difficulties of BIM technology in effectively connecting building information and fire data.

Design/methodology/approach

First, this paper establishes a fire model and an evacuation model based on BIM information. Then, the safety index (SI) is introduced as a comprehensive index, and the IRI is established by integrating the SI function to evaluate the safety of evacuation routes. Based on these two indices, the IRI-based fire evacuation model is established.

Findings

This study offers an Improved Risk Index (IRI)-based fire evacuation model, which may achieve effective evacuation in fire scenes. And the model is verified by taking the fire evacuation of a shopping center building as an example.

Originality/value

This paper proposes a fire evacuation principle based on IRI, so that the relevant personnel can comprehensively consider the fire factors and evacuation factors to achieve the optimization of building design, thereby improving the fire safety of buildings.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 24 April 2024

Aymen Khadr

This paper focuses on the application of a robotic technique for modeling a three-wheeled mobile robot (WMR), considering it as a multibody polyarticulated system. Then the…

Abstract

Purpose

This paper focuses on the application of a robotic technique for modeling a three-wheeled mobile robot (WMR), considering it as a multibody polyarticulated system. Then the dynamic behavior of the developed model is verified using a physical model obtained by Simscape Multibody.

Design/methodology/approach

Firstly, a geometric model is developed using the modified Denavit–Hartenberg method. Then the dynamic model is derived using the algorithm of Newton–Euler. The developed model is performed for a three-wheeled differentially driven robot, which incorporates the slippage of wheels by including the Kiencke tire model to take into account the interaction of wheels with the ground. For the physical model, the mobile robot is designed using Solidworks. Then it is exported to Matlab using Simscape Multibody. The control of the WMR for both models is realized using Matlab/Simulink and aims to ensure efficient tracking of the desired trajectory.

Findings

Simulation results show a good similarity between the two models and verify both longitudinal and lateral behaviors of the WMR. This demonstrates the effectiveness of the developed model using the robotic approach and proves that it is sufficiently precise for the design of control schemes.

Originality/value

The motivation to adopt this robotic approach compared to conventional methods is the fact that it makes it possible to obtain models with a reduced number of operations. Furthermore, it allows the facility of implementation by numerical or symbolical programming. This work serves as a reference link for extending this methodology to other types of mobile robots.

Details

International Journal of Intelligent Unmanned Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 5 December 2023

Steven Alexander Melnyk, Matthias Thürer, Constantin Blome, Tobias Schoenherr and Stefan Gold

This study focuses on (re-)introducing computer simulation as a part of the research paradigm. Simulation is a widely applied research method in supply chain and operations…

Abstract

Purpose

This study focuses on (re-)introducing computer simulation as a part of the research paradigm. Simulation is a widely applied research method in supply chain and operations management. However, leading journals, such as the International Journal of Operations and Production Management, have often been reluctant to accept simulation studies. This study provides guidelines on how to conduct simulation research that advances theory, is relevant, and matters.

Design/methodology/approach

This study pooled the viewpoints of the editorial team of the International Journal of Operations and Production Management and authors of simulation studies. The authors debated their views and outlined why simulation is important and what a compelling simulation should look like.

Findings

There is an increasing importance of considering uncertainty, an increasing interest in dynamic phenomena, such as the transient response(s) to disruptions, and an increasing need to consider complementary outcomes, such as sustainability, which many researchers believe can be tackled by big data and modern analytical tools. But building, elaborating, and testing theory by purposeful experimentation is the strength of computer simulation. The authors therefore argue that simulation should play an important role in supply chain and operations management research, but for this, it also has to evolve away from simply generating and analyzing data. Four types of simulation research with much promise are outlined: empirical grounded simulation, simulation that establishes causality, simulation that supplements machine learning, artificial intelligence and analytics and simulation for sensitive environments.

Originality/value

This study identifies reasons why simulation is important for understanding and responding to today's business and societal challenges, it provides some guidance on how to design good simulation studies in this context and it links simulation to empirical research and theory going beyond multimethod studies.

Details

International Journal of Operations & Production Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0144-3577

Keywords

Article
Publication date: 23 February 2024

Anand Prakash and Sudhir Ambekar

This study aims to describe the fundamentals of teaching risk management in a classroom setting, with an emphasis on the learning interface between higher education and the…

Abstract

Purpose

This study aims to describe the fundamentals of teaching risk management in a classroom setting, with an emphasis on the learning interface between higher education and the workplace environment for business management students.

Design/methodology/approach

The study reviews literature that uses spreadsheets to visualize and model risk and uncertainty. Using six distinct case-based activities (CBAs), the study illustrates the practical applications of software like Palisade @RISK in risk management education. It helps to close the gap between theory and practice. The software assists in estimating the likelihood of a risk event and the impact or repercussions it will have if it occurs. This technique of risk analysis makes it possible to identify the risks that need the most active control.

Findings

@RISK can be used to create models that produce results to demonstrate every potential scenario outcome. When faced with a choice or analysis that involves uncertainty, @RISK can be utilized to enhance the perspective of what the future might contain.

Originality/value

The insights from this study can be used to develop critical thinking, independent thinking, problem-solving and other important skills in learners. Further, educators can apply Bloom’s taxonomy and the problem-solving taxonomy to help students make informed decisions in risky situations.

Details

Higher Education, Skills and Work-Based Learning, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2042-3896

Keywords

Open Access
Article
Publication date: 14 March 2024

Zabih Ghelichi, Monica Gentili and Pitu Mirchandani

This paper aims to propose a simulation-based performance evaluation model for the drone-based delivery of aid items to disaster-affected areas. The objective of the model is to…

180

Abstract

Purpose

This paper aims to propose a simulation-based performance evaluation model for the drone-based delivery of aid items to disaster-affected areas. The objective of the model is to perform analytical studies, evaluate the performance of drone delivery systems for humanitarian logistics and can support the decision-making on the operational design of the system – on where to locate drone take-off points and on assignment and scheduling of delivery tasks to drones.

Design/methodology/approach

This simulation model captures the dynamics and variabilities of the drone-based delivery system, including demand rates, location of demand points, time-dependent parameters and possible failures of drones’ operations. An optimization model integrated with the simulation system can update the optimality of drones’ schedules and delivery assignments.

Findings

An extensive set of experiments was performed to evaluate alternative strategies to demonstrate the effectiveness for the proposed optimization/simulation system. In the first set of experiments, the authors use the simulation-based evaluation tool for a case study for Central Florida. The goal of this set of experiments is to show how the proposed system can be used for decision-making and decision-support. The second set of experiments presents a series of numerical studies for a set of randomly generated instances.

Originality/value

The goal is to develop a simulation system that can allow one to evaluate performance of drone-based delivery systems, accounting for the uncertainties through simulations of real-life drone delivery flights. The proposed simulation model captures the variations in different system parameters, including interval of updating the system after receiving new information, demand parameters: the demand rate and their spatial distribution (i.e. their locations), service time parameters: travel times, setup and loading times, payload drop-off times and repair times and drone energy level: battery’s energy is impacted and requires battery change/recharging while flying.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2042-6747

Keywords

Article
Publication date: 2 April 2024

Paulo Alberto Sampaio Santos, Breno Cortez and Michele Tereza Marques Carvalho

Present study aimed to integrate Geographic Information Systems (GIS) and Building Information Modeling (BIM) in conjunction with multicriteria decision-making (MCDM) to enhance…

Abstract

Purpose

Present study aimed to integrate Geographic Information Systems (GIS) and Building Information Modeling (BIM) in conjunction with multicriteria decision-making (MCDM) to enhance infrastructure investment planning.

Design/methodology/approach

This analysis combines GIS databases with BIM simulations for a novel highway project. Around 150 potential alternatives were simulated, narrowed to 25 more effective routes and 3 options underwent in-depth analysis using PROMETHEE method for decision-making, based on environmental, cost and safety criteria, allowing for comprehensive cross-perspective comparisons.

Findings

A comprehensive framework proposed was validated through a case study. Demonstrating its adaptability with customizable parameters. It aids decision-making, cost estimation, environmental impact analysis and outcome prediction. Considering these critical factors, this study holds the potential to advance new techniques for assessment and planning railways, power lines, gas and water.

Research limitations/implications

The study acknowledges limitations in GIS data quality, particularly in underdeveloped areas or regions with limited technology access. It also overlooks other pertinent variables, like social, economic, political and cultural issues. Thus, conclusions from these simulations may not entirely represent reality or diverse potential scenarios.

Practical implications

The proposed method automates decision-making, reducing subjectivity, aids in selecting effective alternatives and considers environmental criteria to mitigate negative impacts. Additionally, it minimizes costs and risks while demonstrating adaptability for assessing diverse infrastructures.

Originality/value

By integrating GIS and BIM data to support a MCDM workflow, this study proposes to fill the existing research gap in decision-making prioritization and mitigate subjective biases.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 22 March 2024

Qianmai Luo, Chengshuang Sun, Ying Li, Zhenqiang Qi and Guozong Zhang

With increasing complexity of construction projects and new construction processes and methods are adopted, more safety hazards are emerging at construction sites, requiring the…

Abstract

Purpose

With increasing complexity of construction projects and new construction processes and methods are adopted, more safety hazards are emerging at construction sites, requiring the application of the modern risk management methods. As an emerging technology, digital twin has already made valuable contributions to safety risk management in many fields. Therefore, exploring the application of digital twin technology in construction safety risk management is of great significance. The purpose of this study is to explore the current research status and application potential of digital twin technology in construction safety risk management.

Design/methodology/approach

This study followed a four-stage literature processing approach as outlined in the systematic literature review procedure guidelines. It then combined the quantitative analysis tools and qualitative analysis methods to organize and summarize the current research status of digital twin technology in the field of construction safety risk management, analyze the application of digital twin technology in construction safety risk management and identify future research trends.

Findings

The research findings indicate that the application of digital twin technology in the field of construction safety risk management is still in its early stages. Based on the results of the literature analysis, this paper summarizes five aspects of digital twin technology's application in construction safety risk management: real-time monitoring and early warning, safety risk prediction and assessment, accident simulation and emergency response, safety risk management decision support and safety training and education. It also proposes future research trends based on the current research challenges.

Originality/value

This study provides valuable references for the extended application of digital twin technology and offers a new perspective and approach for modern construction safety risk management. It contributes to the enhancement of the theoretical framework for construction safety risk management and the improvement of on-site construction safety.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 13 February 2024

Ionut Nica

This bibliometric mapping study aimed to provide comprehensive insights into the global research landscape of cybernetics. Utilizing the biblioshiny function in R Studio, we…

Abstract

Purpose

This bibliometric mapping study aimed to provide comprehensive insights into the global research landscape of cybernetics. Utilizing the biblioshiny function in R Studio, we conducted an analysis spanning 1958 to 2023, sourcing data from Scopus. This research focuses on key terms such as cybernetics, cybernetics systems, complex adaptive systems, viable system models (VSM), agent-based modeling, feedback loops and complexity systems.

Design/methodology/approach

The analysis leveraged R Studio’s biblioshiny function to perform bibliometric mapping. Keyword searches were conducted within titles, abstracts and keywords, targeting terms central to cybernetics. The timespan, 1958–2023, provides a comprehensive overview of the evolution of cybernetics-related literature. The data were extracted from Scopus to ensure a robust and widely recognized source.

Findings

The results revealed a rich and interconnected global research network in cybernetics. The word cloud analysis highlights prominent terms such as “agent-based modeling,” “complex adaptive systems,” “feedback loop,” “viable system model” and “cybernetics.” Notably, the journal Kybernetes has emerged as a focal point, with significant citations, solidifying its position as a key source within the cybernetics research domain. The bibliometric map provides visual clarity regarding the relationships between various concepts and their evolution over time.

Originality/value

This study contributes original insights by employing advanced bibliometric techniques in R Studio to map the cybernetics research landscape. The comprehensive analysis sheds light on the evolution of key concepts and the global collaborative networks shaping cybernetics research. The identification of influential sources, such as Kybernetes, adds value to researchers seeking to navigate and contribute to the dynamic field of cybernetics. Furthermore, this study highlights that cybernetics not only provides a useful framework for understanding and managing major economic shocks but also offers perspectives for understanding phenomena in various fields such as economics, medicine, environmental sciences and climate change.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 5 January 2024

Wenhao Zhou, Hailin Li, Hufeng Li, Liping Zhang and Weibin Lin

Given the regional heterogeneity of economic development, electricity consumption in various regions exhibits a discrepant growth pattern. The purpose of this study is to…

Abstract

Purpose

Given the regional heterogeneity of economic development, electricity consumption in various regions exhibits a discrepant growth pattern. The purpose of this study is to construct a grey system forecasting model with intelligent parameters for predicting provincial electricity consumption in China.

Design/methodology/approach

First, parameter optimization and structural expansion are simultaneously integrated into a unified grey system prediction framework, enhancing its adaptive capabilities. Second, by setting the minimum simulation percentage error as the optimization goal, the authors apply the particle swarm optimization (PSO) algorithm to search for the optimal grey generation order and background value coefficient. Third, to assess the performance across diverse power consumption systems, the authors use two electricity consumption cases and select eight other benchmark models to analyze the simulation and prediction errors. Further, the authors conduct simulations and trend predictions using data from all 31 provinces in China, analyzing and predicting the development trends in electricity consumption for each province from 2021 to 2026.

Findings

The study identifies significant heterogeneity in the development trends of electricity consumption systems among diverse provinces in China. The grey prediction model, optimized with multiple intelligent parameters, demonstrates superior adaptability and dynamic adjustment capabilities compared to traditional fixed-parameter models. Outperforming benchmark models across various evaluation indicators such as root mean square error (RMSE), average percentage error and Theil’s index, the new model establishes its robustness in predicting electricity system behavior.

Originality/value

Acknowledging the limitations of traditional grey prediction models in capturing diverse growth patterns under fixed-generation orders, single structures and unadjustable background values, this study proposes a fractional grey intelligent prediction model with multiple parameter optimization. By incorporating multiple parameter optimizations and structure expansion, it substantiates the model’s superiority in forecasting provincial electricity consumption.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 9 February 2024

Chao Xia, Bo Zeng and Yingjie Yang

Traditional multivariable grey prediction models define the background-value coefficients of the dependent and independent variables uniformly, ignoring the differences between…

Abstract

Purpose

Traditional multivariable grey prediction models define the background-value coefficients of the dependent and independent variables uniformly, ignoring the differences between their physical properties, which in turn affects the stability and reliability of the model performance.

Design/methodology/approach

A novel multivariable grey prediction model is constructed with different background-value coefficients of the dependent and independent variables, and a one-to-one correspondence between the variables and the background-value coefficients to improve the smoothing effect of the background-value coefficients on the sequences. Furthermore, the fractional order accumulating operator is introduced to the new model weaken the randomness of the raw sequence. The particle swarm optimization (PSO) algorithm is used to optimize the background-value coefficients and the order of the model to improve model performance.

Findings

The new model structure has good variability and compatibility, which can achieve compatibility with current mainstream grey prediction models. The performance of the new model is compared and analyzed with three typical cases, and the results show that the new model outperforms the other two similar grey prediction models.

Originality/value

This study has positive implications for enriching the method system of multivariable grey prediction model.

Details

Grey Systems: Theory and Application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2043-9377

Keywords

Access

Year

Last 6 months (1155)

Content type

Earlycite article (1155)
1 – 10 of over 1000