Search results

1 – 10 of 12
Article
Publication date: 21 May 2024

Liwen Feng, Xiangyan Ding, Yinghui Zhang, Ning Hu and Xiaoyang Bi

The study delves into the influence of wear cycles on these parameters. The purpose of this paper is to identify characteristic patterns of σRS and εPEEQ that discern varying wear…

Abstract

Purpose

The study delves into the influence of wear cycles on these parameters. The purpose of this paper is to identify characteristic patterns of σRS and εPEEQ that discern varying wear situations, thereby contributing to the enrichment of wear theory. Furthermore, the findings serve as a foundational basis for nondestructive and in situ wear detection methodologies, such as nonlinear ultrasonic detection, known for its sensitivity to σRS and εPEEQ.

Design/methodology/approach

This paper elucidates the wear mechanism through the lens of residual stress (σRS) and plastic deformation within distinct fretting regimes, using a two-dimensional cylindrical/flat contact model. It specifically explores the impact of the displacement amplitude and cycles on the distribution of residual stress and equivalent plastic strain (εPEEQ) in both gross slip regime and partial slip regimes.

Findings

Therefore, when surface observation of wear is challenging, detecting the σRS trend at the center/edge, region width and εPEEQ distribution, as well as the maximum σRS distribution along the depth, proves effective in distinguishing wear situations (partial or gross slip regimes). However, discerning wear situations based on εPEEQ along the depth direction remains challenging. Moreover, in the gross slip regime, using σRS distribution or εPEEQ along the width direction rather than the depth direction can effectively provide feedback on cycles and wear range.

Originality/value

This work introduces a novel perspective for investigating wear theory through the distribution of residual stress (σRS) and equivalent plastic strain (εPEEQ). It presents a feasible detection theory for wear situations using nondestructive and in situ methods, such as nonlinear ultrasonic detection, which is sensitive to σRS and εPEEQ.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2024-0005/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 7 May 2024

Yinghong Li, Wei Tan, Wenjie Pei and Guorui Zhu

The purpose of this paper is to investigate the effect of NaCl solution with different concentrations on impact-sliding fretting corrosion behavior of Inconel 690TT steam…

Abstract

Purpose

The purpose of this paper is to investigate the effect of NaCl solution with different concentrations on impact-sliding fretting corrosion behavior of Inconel 690TT steam generator heat transfer tubes.

Design/methodology/approach

The optical 3D profiler was used to measure the wear profile and calculated the wear volume. Corrosion behavior was studied using open circuit potential monitoring and potentiodynamic polarization testing. The morphologies and elemental distributions of wear scars were analyzed using scanning electron microscopy and energy-dispersive spectroscopy. The synergism of wear and corrosion was analyzed according to the ASTM G119 standard.

Findings

The corrosion tendency reflected by OCP and the corrosion current calculated by Tafel both increased with the increase of NaCl concentration. The total volume loss of the material increased with concentration, and it was known from the synergism that the volume loss caused by corrosion-enhanced wear accounted for the largest proportion, while the wear-enhanced corrosion also made a greater contribution to volume loss than tangential fretting corrosion. Through the analysis of the material morphologies and synergism of wear and corrosion, the damage mechanism was elucidated.

Originality/value

The research findings can provide reference for impact-sliding fretting corrosion behavior of Inconel 690TT heat transfer tubes in NaCl solution with different concentrations.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 20 May 2024

Shengjian Zhang, Min Li, Baoyi Li, Hansen Zhao and Feng Wang

To improve the corrosion resistance of magnesium alloys, the construction of protective coatings is necessary to extend the service life of Mg-based materials.

Abstract

Purpose

To improve the corrosion resistance of magnesium alloys, the construction of protective coatings is necessary to extend the service life of Mg-based materials.

Design/methodology/approach

SiO2 nanoparticles modified by dodecyltrimethoxysilane (DTMS) were added to the PP and a superhydrophobic Mg(OH)2/PP-60mSiO2 composite coating was fabricated on the surface of AZ31 magnesium alloy via the hydrothermal method and subsequently the immersion treatment.

Findings

Hydrophilic SiO2 nanoparticles become hydrophobic after modified by DTMS, showing a higher dispersibility in xylene. By incorporating modified SiO2 nanoparticles into the composite PP coating, the hydrophobicity of the layer was enhanced, resulting in a contact angle of 166.3° and a sliding angle of 3.4°. It also improved the water repellency and durability of the coating. Furthermore, the intermediate layer of Mg(OH)2 significantly strengthened the bond between the PP layer and the substrate. The Mg(OH)2/PP-60mSiO2 composite coating significantly enhances the corrosion resistance of the magnesium alloy by effectively blocking the infiltration of the corrosion anions during corrosion. The corrosion current density of the Mg(OH)2/PP-60mSiO2 composite coating is approximately 8.23 × 10–9 A·cm-2, which can achieve a magnitude three times lower than its substrate, making it a promising surface modification for the Mg alloy.

Originality/value

The composite coating effectively and durably enhances the corrosion resistance of magnesium alloys.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 20 May 2024

Mugahed Amran and Ali Onaizi

Low-carbon concrete represents a new direction in mitigating the global warming effects caused by clinker manufacturing. Utilizing Saudi agro-industrial by-products as an…

Abstract

Purpose

Low-carbon concrete represents a new direction in mitigating the global warming effects caused by clinker manufacturing. Utilizing Saudi agro-industrial by-products as an alternative to cement is a key support in reducing clinker production and promoting innovation in infrastructure and circular economy concepts, toward decarbonization in the construction industry. The use of fly ash (FA) as a cement alternative has been researched and proven effective in enhancing the durability of FA-based concrete, especially at lower replacement levels. However, at higher replacement levels, a noticeable impediment in mechanical strength indicators limits the use of this material.

Design/methodology/approach

In this study, low-carbon concrete mixes were designed by replacing 50% of the cement with FA. Varying ratios of nano-sized glass powder (4 and 6% of cement weight) were used as nanomaterial additives to enhance the mechanical properties and durability of the designed concrete. In addition, a 10% of the mixing water was replaced with EMs dosage.

Findings

The results obtained showed a significant positive impact on resistance and durability properties when replacing 10% of the mixing water with effective microorganisms (EMs) broth and incorporating nanomaterial additives. The optimal mix ratios were those designed with 10% EMs and 4–6% nano-sized glass powder additives. However, it can be concluded that advancements in eco-friendly concrete additive technologies have made significant contributions to the development of sophisticated concrete varieties.

Originality/value

This study focused at developing nanomaterial additives from Saudi industrial wastes and at presenting a cost-effective and feasible solution for enhancing the properties of FA-based concrete. It has also been found that the inclusion of EMs contributes effectively to enhancing the concrete's resistance properties.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 20 May 2024

Chong Zhang, Jiayi Xiang and Qifan Wen

Due to the harsh underground environment in coal mining, the surface of hydraulic support columns corrodes severely, resulting in significant economic losses. Therefore, a highly…

Abstract

Purpose

Due to the harsh underground environment in coal mining, the surface of hydraulic support columns corrodes severely, resulting in significant economic losses. Therefore, a highly corrosion-resistant coatings is needed to extend the service life of the columns.

Design/methodology/approach

This study aims to compare the corrosion resistance of ST-Cr3C2-NiCr (sealed treatment Cr3C2-NiCr) coatings with industrially applied chromium plating. The corrosion failure mechanism of the coatings was investigated.

Findings

The results demonstrated that the ST-Cr3C2-NiCr coatings exhibited excellent corrosion resistance. After sealing treatment, the corrosion potential of Cr3C2-NiCr coatings was −0.215 V, and the corrosion current density of Cr3C2-NiCr coatings was lower than that of the plated parts.

Practical implications

ST-Cr3C2-NiCr coatings prepared by supersonic atmospheric plasma spraying could provide excellent corrosion resistance in the coal industry.

Originality/value

The low porosity and the presence of the NiCr phase were crucial factors contributing to the preferable corrosion resistance exhibited by the ST-Cr3C2-NiCr coatings. The corrosive process of the coatings involved layer-by-layer delamination of surface oxide film, sub-surface pitting, formation and degradation of sub-surface passive film, as well as severe block-like delamination.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 7 May 2024

Mohammad A. Gharaibeh and Jürgen Wilde

The purpose of this paper is to investigate the thermomechanical response of four well-known lead-free die attach materials: sintered silver, sintered nano-copper particles…

Abstract

Purpose

The purpose of this paper is to investigate the thermomechanical response of four well-known lead-free die attach materials: sintered silver, sintered nano-copper particles, gold-tin solders and silver-tin transient liquid phase (TLP) bonds.

Design/methodology/approach

This examination is conducted through finite element analysis. The mechanical properties of all die attach systems, including elastic and Anand creep parameters, are obtained from relevant literature and incorporated into the numerical analysis. Consequently, the bond stress-strain relationships, stored inelastic strain energies and equivalent plastic strains are thoroughly examined.

Findings

The results indicate that silver-tin TLP bonds are prone to exhibiting higher inelastic strain energy densities, while sintered silver and copper interconnects tend to possess higher levels of plastic strains and deformations. This suggests a higher susceptibility to damage in these metallic die attachments. On the other hand, the more expensive gold-based solders exhibit lower inelastic strain energy densities and plastic strains, implying an improved fatigue performance compared to other bonding configurations.

Originality/value

The utilization of different metallic material systems as die attachments in power electronics necessitates a comprehensive understanding of their thermomechanical behavior. Therefore, the results of the present paper can be useful in the die attach material selection in power electronics.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 10 May 2024

Ye Li, Chengyun Wang and Junjuan Liu

In this essay, a new NDAGM(1,N,α) power model is recommended to resolve the hassle of the distinction between old and new information, and the complicated nonlinear traits between…

Abstract

Purpose

In this essay, a new NDAGM(1,N,α) power model is recommended to resolve the hassle of the distinction between old and new information, and the complicated nonlinear traits between sequences in real behavior systems.

Design/methodology/approach

Firstly, the correlation aspect sequence is screened via a grey integrated correlation degree, and the damped cumulative generating operator and power index are introduced to define the new model. Then the non-structural parameters are optimized through the genetic algorithm. Finally, the pattern is utilized for the prediction of China’s natural gas consumption, and in contrast with other models.

Findings

By altering the unknown parameters of the model, theoretical deduction has been carried out on the newly constructed model. It has been discovered that the new model can be interchanged with the traditional grey model, indicating that the model proposed in this article possesses strong compatibility. In the case study, the NDAGM(1,N,α) power model demonstrates superior integrated performance compared to the benchmark models, which indirectly reflects the model’s heightened sensitivity to disparities between new and old information, as well as its ability to handle complex linear issues.

Practical implications

This paper provides a scientifically valid forecast model for predicting natural gas consumption. The forecast results can offer a theoretical foundation for the formulation of national strategies and related policies regarding natural gas import and export.

Originality/value

The primary contribution of this article is the proposition of a grey multivariate prediction model, which accommodates both new and historical information and is applicable to complex nonlinear scenarios. In addition, the predictive performance of the model has been enhanced by employing a genetic algorithm to search for the optimal power exponent.

Details

Grey Systems: Theory and Application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 7 May 2024

Haruna Ibrahim, George Wardeh, Hanaa Fares and Elhem Ghorbel

The main aim of the current study is to investigate the effect of Anti-Crack HP 67/36 glass fibre on the mechanical performance of mortars made of cement, with a focus on…

Abstract

Purpose

The main aim of the current study is to investigate the effect of Anti-Crack HP 67/36 glass fibre on the mechanical performance of mortars made of cement, with a focus on post-cracking evaluations using the digital image correlation (DIC) technique.

Design/methodology/approach

Experimental tests were carried out on 36-mm long fibres at 0.8% by volume and added to the normal strength (NSM), high strength (HSM) and high strength mortar with fly ash (HSMFA) mortars. CEM I 52.5 CP2 NF, CEM II/A-L 42.5 NF and CEM III/C 32.5 N-SR PM were used for each series of mortar to assess the performance of the glass fibres with the types of cement. F-class fly (FA) ash was used to reduce global CO2 emissions.

Findings

The mortar’s strength decreased as the cement types changed from CEM I to CEM II and III. However, due to changes in the portlandite content of the cement, water porosity increased for both types of mortar, without and with fibre. It was also found that using glass fibre increased flexural strength more than compressive strength, regardless of the type of cement used. For all the strength classes, it was found that the mortar mixes with CEM I had the highest critical crack opening (wc) and fracture energy (GF), followed by CEM II and III. No significant effects were observed in the mortar’s property by replacing fly ash (12%).

Research limitations/implications

Only mortars were formulated in this study, but the results must be verified at the concrete scale.

Practical implications

Validation of the DIC technique to characterize the post-cracking behaviour of cement-based material. Use of glass fibres to improve the material’s resistance to cracking.

Social implications

Use of CEM II and CEM III cements with low CO2 footprint instead of CEMI without altering the mechanical performance of the material.

Originality/value

The work is a further contribution to studying the cracking behaviour of several series of variable mortars depending on the resistance class and the type of cement used.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 20 May 2024

Zeyu Xing, Debin Fang, Jing Wang and Lupeng Zhang

The purpose of this research is to explore how an innovation organization's orientation toward the digital economy influences its position within R&D networks. By using…

Abstract

Purpose

The purpose of this research is to explore how an innovation organization's orientation toward the digital economy influences its position within R&D networks. By using institutional theory, the study aims to forecast market changes and understand how organizations can navigate the digital economy to secure essential resources and minimize dependencies.

Design/methodology/approach

This study employs a longitudinal panel dataset with 11,763 entries from 1995 to 2018, covering strategic emerging industries in China to analyze the impact of digital economy orientation on R&D networks. Utilizing advanced statistical models, it assesses the role of the legal environment as a moderator. This methodological approach facilitates a robust examination of the nexus between digital orientation and network dynamics within the context of institutional theory.

Findings

The study reveals that an organization's digital economy orientation enhances its centrality in R&D networks but reduces its control over structural holes. The legal environment negatively moderates the impact of digital economy orientation on network centrality, while positively influencing the relationship with network structural holes. These findings offer new insights into how institutional forces shape the strategic positioning of organizations in R&D collaborations.

Originality/value

This research offers a fresh perspective on the digital economy's impact on R&D networks, particularly in the Industry-University-Research (IUR) context. It extends the discourse by integrating institutional theory to elucidate the adaptation of R&D networks in the digital era. By identifying the legal environment as a moderator, the study provides a nuanced understanding of the strategic alignment within networks influenced by digital advancements. The unique focus on China's R&D networks presents a valuable contribution to the global discussion on digital integration and innovation ecosystems, highlighting the intersection of policy, academia, and industry in shaping research and development trajectories.

Details

European Journal of Innovation Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1460-1060

Keywords

Open Access
Article
Publication date: 19 April 2024

Qingmei Tan, Muhammad Haroon Rasheed and Muhammad Shahid Rasheed

Despite its devastating nature, the COVID-19 pandemic has also catalyzed a substantial surge in the adoption and integration of technological tools within economies, exerting a…

Abstract

Purpose

Despite its devastating nature, the COVID-19 pandemic has also catalyzed a substantial surge in the adoption and integration of technological tools within economies, exerting a profound influence on the dissemination of information among participants in stock markets. Consequently, this present study delves into the ramifications of post-pandemic dynamics on stock market behavior. It also examines the relationship between investors' sentiments, underlying behavioral drivers and their collective impact on global stock markets.

Design/methodology/approach

Drawing upon data spanning from 2012 to 2023 and encompassing major world indices classified by Morgan Stanley Capital International’s (MSCI) market and regional taxonomy, this study employs a threshold regression model. This model effectively distinguishes the thresholds within these influential factors. To evaluate the statistical significance of variances across these thresholds, a Wald coefficient analysis was applied.

Findings

The empirical results highlighted the substantive role that investors' sentiments and behavioral determinants play in shaping the predictability of returns on a global scale. However, their influence on developed economies and the continents of America appears comparatively lower compared with the Asia–Pacific markets. Similarly, the regions characterized by a more pronounced influence of behavioral factors seem to reduce their reliance on these factors in the post-pandemic landscape and vice versa. Interestingly, the post COVID-19 technological advancements also appear to exert a lesser impact on developed nations.

Originality/value

This study pioneers the investigation of these contextual dissimilarities, thereby charting new avenues for subsequent research studies. These insights shed valuable light on the contextualized nexus between technology, societal dynamics, behavioral biases and their collective impact on stock markets. Furthermore, the study's revelations offer a unique vantage point for addressing market inefficiencies by pinpointing the pivotal factors driving such behavioral patterns.

Details

China Accounting and Finance Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1029-807X

Keywords

Access

Year

Last month (12)

Content type

Earlycite article (12)
1 – 10 of 12