Search results

1 – 10 of 48
Open Access
Article
Publication date: 19 August 2024

Veronica Chiodo, Francesco Gerli and Ambra Giuliano

The complexity of contemporary societal challenges in emerging countries reanimates the necessity of collective action to resolve them. What is required is system change, namely…

Abstract

Purpose

The complexity of contemporary societal challenges in emerging countries reanimates the necessity of collective action to resolve them. What is required is system change, namely, transformations in policy, practice, power relationships, market dynamics and social customs that underlie social and environmental issues. Technological innovations, paired with intentional social changes, might play a transformative role in this effort. This paper aims to investigate the relationship between the adoption of technologies in social enterprises (SEs) and their contribution to achieving system change. It also addresses the effects of their hybrid nature on this relationship.

Design/methodology/approach

The analysis relied on data collected through a survey of the global population of Ashoka fellows, which is largely based in emerging economies. Three models were developed concerning different pathways to achieve system change identified in the theoretical framework. These were tested using Probit regressions.

Findings

The investigation confirms that technology can support SEs in navigating complex pathways to achieve system change rather than merely enabling linear scaling operational strategies. The pursuit of economic value creation, in conjunction with a social mission, decreases the ability of SEs to achieve system change. This is because the scaling paths which hardly create revenues are neglected.

Originality/value

The study conceptualises a multifaceted model of system change. It tests the framework empirically to show that SEs can adopt technologies to unleash complex system change processes to generate societal impact, on top of merely demonstrating linear approaches to scaling or replication. The paper questions the capacity of SEs to facilitate system change without appropriate financial support and the inherent tensions between hybridity and the depth of system change dynamics.

Details

Journal of Entrepreneurship in Emerging Economies, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2053-4604

Keywords

Open Access
Article
Publication date: 12 April 2024

Aleš Zebec and Mojca Indihar Štemberger

Although businesses continue to take up artificial intelligence (AI), concerns remain that companies are not realising the full value of their investments. The study aims to…

2462

Abstract

Purpose

Although businesses continue to take up artificial intelligence (AI), concerns remain that companies are not realising the full value of their investments. The study aims to provide insights into how AI creates business value by investigating the mediating role of Business Process Management (BPM) capabilities.

Design/methodology/approach

The integrative model of IT Business Value was contextualised, and structural equation modelling was applied to validate the proposed serial multiple mediation model using a sample of 448 organisations based in the EU.

Findings

The results validate the proposed serial multiple mediation model according to which AI adoption increases organisational performance through decision-making and business process performance. Process automation, organisational learning and process innovation are significant complementary partial mediators, thereby shedding light on how AI creates business value.

Research limitations/implications

In pursuing a complex nomological framework, multiple perspectives on realising business value from AI investments were incorporated. Several moderators presenting complementary organisational resources (e.g. culture, digital maturity, BPM maturity) could be included to identify behaviour in more complex relationships. The ethical and moral issues surrounding AI and its use could also be examined.

Practical implications

The provided insights can help guide organisations towards the most promising AI activities of process automation with AI-enabled decision-making, organisational learning and process innovation to yield business value.

Originality/value

While previous research assumed a moderated relationship, this study extends the growing literature on AI business value by empirically investigating a comprehensive nomological network that links AI adoption to organisational performance in a BPM setting.

Article
Publication date: 15 August 2023

Babak Naysary

Driven by the evidence from the literature on the significance of mobile (m-)payment in economic growth and productivity and at the same time the relative dismal adoption of this…

Abstract

Purpose

Driven by the evidence from the literature on the significance of mobile (m-)payment in economic growth and productivity and at the same time the relative dismal adoption of this service, the purpose of present paper is to elucidate the merchants’ m-payment adoption from the perspective of trust, drawing upon the game theory framework, in the Malaysian context.

Design/methodology/approach

An online survey consisting of 302 respondents was carried out to investigate the impact of trust and opportunism on merchants’ perceived trustworthiness using a two-staged structural equation modeling–neural network approach to determine the significance and relative importance of variables. This study also applies a game-theoretic approach to analyze the impact of trust on the relationship between merchants and m-payment service providers.

Findings

The results indicate a positive and statistically significant relationship between merchant trust, merchant opportunism and perceived trustworthiness, and a statistically significant negative relationship was found between m-payment provider opportunism and perceived trustworthiness. The findings from the prisoner’s dilemma two-player model indicate that the scenarios of mutual trust and mutual opportunism as paradigmatic of cooperation and defection produce the best and worse outcomes, respectively. An intriguing result was the positive impact of merchant opportunism on perceived trustworthiness, which indicates a very calculative orientation of merchants in m-payment contracting.

Originality/value

To the best of the authors’ knowledge, this is among the first attempts to propose a game theory approach to the interaction between merchants and m-payment providers under the framework of trust and opportunism. A game theory study in the context of m-payment adoption can contribute to the theoretical literature by providing insights into the decision-making processes of merchants. By incorporating trust and opportunism into the game theory model, we can gain a better understanding of how they affect the decision-making process and overall adoption rates. The conclusions and implications provide useful insights for managers of both m-payment platforms and merchants in this relational exchange. The results of the present research can provide insights into the factors that influence merchant decisions and guide them toward suitable partnerships for successful adoption and can guide authorities for policy interventions and supporting adoption efforts.

Details

Competitiveness Review: An International Business Journal , vol. 34 no. 4
Type: Research Article
ISSN: 1059-5422

Keywords

Article
Publication date: 27 August 2024

Supriya Raheja, Rakesh Garg and Ritvik Garg

The Internet of Things (IoT) cloud platforms provide end-to-end solutions that integrate various capabilities such as application development, device and connectivity management…

Abstract

Purpose

The Internet of Things (IoT) cloud platforms provide end-to-end solutions that integrate various capabilities such as application development, device and connectivity management, data storage, data analysis and data visualization. The high use of these platforms results in their huge availability provided by different capabilities. Therefore, choosing the optimal IoT cloud platform to develop IoT applications successfully has become crucial. The key purpose of the present study is to implement a hybrid multi-attribute decision-making approach (MADM) to evaluate and select IoT cloud platforms.

Design/methodology/approach

The optimal selection of the IoT cloud platforms seems to be dependent on multiple attributes. Hence, the optimal selection of IoT cloud platforms problem is modeled as a MADM problem, and a hybrid approach named neutrosophic fuzzy set-Euclidean taxicab distance-based approach (NFS-ETDBA) is implemented to solve the same. NFS-ETDBA works on the calculation of assessment score for each alternative, i.e. IoT cloud platforms, by combining two different measures: Euclidean and taxicab distance.

Findings

A case study to illustrate the working of the proposed NFS-ETDBA for optimal selection of IoT cloud platforms is given. The results obtained on the basis of calculated assessment scores depict that “Azure IoT suite” is the most preferable IoT cloud platform, whereas “Salesman IoT cloud” is the least preferable.

Originality/value

The proposed NFS-ETDBA methodology for the IoT cloud platform selection is implemented for the first time in this field. ETDBA is highly capable of handling the large number of alternatives and the selection attributes involved in any decision-making process. Further, the use of fuzzy set theory (FST) makes it very easy to handle the impreciseness that may occur during the data collection through a questionnaire from a group of experts.

Details

International Journal of Intelligent Computing and Cybernetics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 21 May 2024

Dadasikandar Kanekal, Eshan Sabhapandit, Sumit Kumar Jindal and Hemprasad Yashwant Patil

The purpose of this research is to study the performance of piezoresistive pressure sensors using polysilicon as the piezoresistive material, which is typically used to measure…

Abstract

Purpose

The purpose of this research is to study the performance of piezoresistive pressure sensors using polysilicon as the piezoresistive material, which is typically used to measure pressure in high-temperature environments.

Design/methodology/approach

The performance of this sensor is enhanced by studying the influence of multi-turn configuration at which the piezoresistors are arranged. Different configurations are studied and compared by laying down their analytical solution.

Findings

The validation of analytical results is accomplished through finite element analysis using the software COMSOL Multiphysics. The best configuration, which uses a partial triple-turn configuration, was able to achieve a sensitivity of 116.00 mV/V/MPa over a simulated pressure range of 0 to 500 KPa.

Originality/value

The literature shows the study of single-turn and double-turn meander-shaped configuration of micro-electromechanical systems piezoresistive pressure sensor but multi-turn meander-shaped configuration using a square silicon diaphragm has not been reported. Its study has reflected promising results than its counterparts based on key performance parameters such as sensitivity and linearity and are more effective to be used for automotive, aviation, biomedical and consumer electronics applications.

Details

Sensor Review, vol. 44 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 31 May 2024

Zuraihana Bachok, Aizat Abas, Hooi Feng Tang, Muhammad Zaim Hanif Nazarudin, Mohamad Fikri Mohd Sharif and Fakhrozi Che Ani

This study aims to investigate the influence of different solder alloy materials on passive devices during laser soldering process. Solder alloy material has been found to…

Abstract

Purpose

This study aims to investigate the influence of different solder alloy materials on passive devices during laser soldering process. Solder alloy material has been found to significantly influence the solder joint’s quality, such as void formation that can lead to cracks, filling time that affects productivity and fillet shape that determines the solder joint’s reliability.

Design/methodology/approach

Finite volume method (FVM)-based simulation that was validated using real laser soldering experiment is used to evaluate the effect of various solder alloy materials, including SAC305, SAC387, SAC396 and SAC405 in laser soldering. These solders are commonly used to assemble the pin-through hole (PTH) capacitor onto the printed circuit board.

Findings

The simulation results show how the void ratio, filling time and flow characteristics of different solder alloy materials affect the quality of the solder joint. The optimal solder alloy is SAC396 due to its low void ratio of 1.95%, fastest filling time (1.3 s) to fill a 98% PTH barrel and excellent flow characteristics. The results give the ideal setting for the parameters that can increase the effectiveness of the laser soldering process, which include reducing filling time from 2.2 s to less than 1.5 s while maintaining a high-quality solder joint with a void ratio of less than 2%. Industries that emphasize reliable soldering and effective joint formation gain the advantage of minimal occurrence of void formation, quick filling time and exceptional flowability offered by this solution.

Practical implications

This research is expected not only to improve solder joint reliability but also to drive advancements in laser soldering technology, supporting the development of efficient and reliable microelectronics assembly processes for future electronic devices. The optimized laser soldering material will enable the production of superior passive devices, meeting the growing demands of the electronics market for smaller, high-performance electronic products.

Originality/value

The comparison of different solder alloy materials for PTH capacitor assembly during the laser soldering process has not been reported to date. Additionally, volume of fluid numerical analysis of the quality and reliability of different solder alloy joints has never been conducted on real PTH capacitor assemblies.

Details

Soldering & Surface Mount Technology, vol. 36 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 18 July 2024

Anindya Bose, Sarthak Sengupta and Sayori Biswas

This study aims to provide a microfluidic blood glucose sensing platform based on integrated interdigitated electrode arrays (IDEAs) on a flexible quartz glass substrate, adhering…

Abstract

Purpose

This study aims to provide a microfluidic blood glucose sensing platform based on integrated interdigitated electrode arrays (IDEAs) on a flexible quartz glass substrate, adhering closely to pertinent electrochemical characterizations.

Design/methodology/approach

Sensors are the key elements of the modern electronics era through which all the possible physical quantities can be detected and converted into their equivalent electrical form and processed further. But to make the sensing environment better, various types of innovative architectures are being developed nowadays and among them interdigitated electrodes are quite remarkable in terms of their sensing capability. They are a well-qualified candidate in the field of gas sensing and biosensing, but even their sensitivities are getting saturated due to their physical dimensions. Most of the thin film IDEAs fabricated by conventional optical lithographic techniques do not possess a high surface-to-volume ratio to detect the target specified and that reduces their sensitivity factor. In this context, a classic conductive carbon-based highly sensitive three dimensional (3D) IDEA-enabled biosensing system has been conceived on a transparent and flexible substrate to measure the amount of glucose concentration present in human blood. 3D IDEA possesses a way better capacitive sensing behavior compared to conventional thin film microcapacitive electrodes. To transmit the target biological analyte sample property for the detection purpose to the interdigitated array-based sensing platform, the design of a microfluidic channel is initiated on the same substrate. The complex 3D Inter Digital array structure improves the overall capacitance of the entire sensing platform and the reactive surface area as well. The manufactured integrated device displays a decent value of sensitivity in the order of 5.6 µA mM−1 cm−2.

Findings

Development of a low-cost array-based integrated and highly flexible microfluidic biochip to extract the quantity of glucose present in human blood.

Originality/value

Potential future research opportunities in the realm of integrated miniaturized, low-cost smart biosensing systems may arise from this study.

Details

Sensor Review, vol. 44 no. 5
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 9 July 2024

Adrian Pietruszka, Paweł Górecki and Agata Skwarek

This paper aims to investigate the influence of composite solder joint preparation on the thermal properties of metal-oxide-semiconductor field-effect transistors (MOSFETs) and…

Abstract

Purpose

This paper aims to investigate the influence of composite solder joint preparation on the thermal properties of metal-oxide-semiconductor field-effect transistors (MOSFETs) and the mechanical strength of the soldered joint.

Design/methodology/approach

Reinforced composite solder joints with the addition of titanium oxide nanopowder (TiO2) were prepared. The reference alloy was Sn99Ag0.3Cu0.7. Reinforced joints differed in the weight percentage of TiO2, ranging from 0.125 to 1.0 Wt.%. Two types of components were used for the tests. The resistor in the 0805 package was used for mechanical strength tests, where the component was soldered to the FR4 substrate. For thermal parameters measurements, a power element MOSFET in a TO-263 package was used, which was soldered to a metal core printed circuit board (PCB) substrate. Components were soldered in batch IR oven.

Findings

Shear tests showed that the addition of titanium oxide does not significantly increase the resistance of the solder joint to mechanical damage. Titanium oxide addition was shown to not considerably influence the soldered joint’s mechanical strength compared to reference samples when soldered in batch ovens. Thermal resistance Rthj-a of MOSFETs depends on TiO2 concentration in the composite solder joint reaching the minimum Rthj at 0.25 Wt.% of TiO2.

Research limitations/implications

Mechanical strength: TiO2 reinforcement shows minimal impact on mechanical strength, suggesting altered liquidus temperature and microstructure, requiring further investigation. Thermal performance: thermal parameters vary with TiO2 concentration, with optimal performance at 0.25 Wt.%. Experimental validation is crucial for practical application. Experimental confirmation: validation of optimal concentrations is essential for accurate assessment and real-world application. Soldering method influence: batch oven soldering may affect mechanical strength, necessitating exploration of alternative methods. Thermal vs mechanical enhancement: while TiO2 does not notably enhance mechanical strength, it improves thermal properties, highlighting the need for balanced design in power semiconductor assembly.

Practical implications

Incorporating TiO2 enhances thermal properties in power semiconductor assembly. Optimal concentration balancing thermal performance and mechanical strength must be determined experimentally. Batch oven soldering may influence mechanical strength, requiring evaluation of alternative techniques. TiO2 composite solder joints offer promise in power electronics for efficient heat dissipation. Microstructural analysis can optimize solder joint design and performance. Rigorous quality control during soldering ensures consistent thermal performance and mitigates negative effects on mechanical strength.

Social implications

The integration of TiO2 reinforcement in solder joints impacts thermal properties crucial for power semiconductor assembly. However, its influence on mechanical strength is limited, potentially affecting product reliability. Understanding these effects necessitates collaborative efforts between researchers and industry stakeholders to develop robust soldering techniques. Ensuring optimal TiO2 concentration through experimental validation is essential to maintain product integrity and safety standards. Additionally, dissemination of research findings and best practices can empower manufacturers to make informed decisions, fostering innovation and sustainability in electronic manufacturing processes. Ultimately, addressing these social implications promotes technological advancement while prioritizing consumer trust and product quality in the electronics industry.

Originality/value

The research shows the importance of the soldering technology used to assemble MOSFET devices.

Details

Soldering & Surface Mount Technology, vol. 36 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 5 August 2024

Christopher Igwe Idumah, Raphael Stone Odera and Emmanuel Obumneme Ezeani

Nanotechnology (NT) advancements in personal protective textiles (PPT) or personal protective equipment (PPE) have alleviated spread and transmission of this highly contagious…

Abstract

Purpose

Nanotechnology (NT) advancements in personal protective textiles (PPT) or personal protective equipment (PPE) have alleviated spread and transmission of this highly contagious viral disease, and enabled enhancement of PPE, thereby fortifying antiviral behavior.

Design/methodology/approach

Review of a series of state of the art research papers on the subject matter.

Findings

This paper expounds on novel nanotechnological advancements in polymeric textile composites, emerging applications and fight against COVID-19 pandemic.

Research limitations/implications

As a panacea to “public droplet prevention,” textiles have proven to be potentially effective as environmental droplet barriers (EDBs).

Practical implications

PPT in form of healthcare materials including surgical face masks (SFMs), gloves, goggles, respirators, gowns, uniforms, scrub-suits and other apparels play critical role in hindering the spreading of COVID-19 and other “oral-respiratory droplet contamination” both within and outside hospitals.

Social implications

When used as double-layers, textiles display effectiveness as SFMs or surgical-fabrics, which reduces droplet transmission to <10 cm, within circumference of ∼0.3%.

Originality/value

NT advancements in textiles through nanoparticles, and sensor integration within textile materials have enhanced versatile sensory capabilities, robotics, flame retardancy, self-cleaning, electrical conductivity, flexibility and comfort, thereby availing it for health, medical, sporting, advanced engineering, pharmaceuticals, aerospace, military, automobile, food and agricultural applications, and more. Therefore, this paper expounds on recently emerging trends in nanotechnological influence in textiles for engineering and fight against COVID-19 pandemic.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 9 July 2024

Qinghai Li, Junzhe Ji, Jilei Huang, Christiane Prange and Deli Yang

Unlike well-documented market or behavioral uncertainty, patent uncertainty has been significantly under-explored in the field of international entrepreneurship. Drawing on an…

Abstract

Purpose

Unlike well-documented market or behavioral uncertainty, patent uncertainty has been significantly under-explored in the field of international entrepreneurship. Drawing on an institution-based view of strategy, this study investigated Netac, a Chinese knowledge-based international new venture (KINV), which was facing uncertainty over patents in China and the US. The aim was to address two questions: (1) how does patent uncertainty emerge in the context of KINVs? And (2) how can KINVs navigate patent hazards by interacting with national patent institutions?

Design/methodology/approach

A longitudinal single-case study approach was adopted as the most appropriate method for exploring novel business phenomena and dynamic processes.

Findings

Results suggested that a KINV can adopt strategies to build a unique identity and so better conform to the expectations of institutions that ultimately decide on patent validity. Strategies may involve building institutional awareness, amplifying mass media effects, and strategically managing the intellectual property and socio-emotional tensions between China and the US.

Originality/value

This study introduced the notion of patent uncertainty into research around international new ventures, highlighting how this type of uncertainty in the advanced technology sector can affect the end-product and patent licensing opportunities of KINVs. It also explored the institution-based view of company strategy in the internationalization process by emphasizing interactive institutional mechanisms, and the role of an organization’s identity when interacting with institutions. The study enriches the literature on institutional theory and organizational identity, and also suggests solutions for firms dealing with efforts by competitors to invalidate patents.

Details

International Journal of Entrepreneurial Behavior & Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2554

Keywords

1 – 10 of 48