Search results

1 – 9 of 9
Article
Publication date: 3 May 2024

Changhyun (Lyon) Nam, Mitchell Lewis Stephenson, Chunhui Xiang and Eulanda Sanders

This study aimed to compare the performance of sustainable shoes made with bacterial cellulosic composite and commercial leather shoes using an experimental research design. The…

Abstract

Purpose

This study aimed to compare the performance of sustainable shoes made with bacterial cellulosic composite and commercial leather shoes using an experimental research design. The two specific research objectives were: (1) to examine the basic material properties of multi-layered bacterial cellulosic materials (MBC), which include green tea-based cellulosic (GBC) mats, hemp fabrics, and denim fabrics, in comparison with those of two-layered leathers (MCP) consisting of calf-skin and pig-skin – commonly used in shoe manufacturing; and (2) to explore wearers’ performance in the two types of shoes by assessing quantitative kinematic and kinetic parameters of lower body movements.

Design/methodology/approach

This study focused on assessing the basic materials testing and performance of sustainable shoes through a biomechanical approach, in contrast to commercially available leather shoes, through human wear trials. In this study, green tea-based cellulosic (GBC) mats were developed using the optimal combination of ingredients for cellulose growth. Subsequently, the GBC, denim fabric (100% cotton), and 100% hemp fabric were combined to create multi-layered bacterial cellulosic materials (MBC) as an alternative to leather. Additionally, calf-skin and pig-skin leathers were utilized to produce a commercially available two-layered leather (MCP), commonly employed in shoe manufacturing. 37 of the 42 human subjects who participated in wear testing were collected. A paired t-test was conducted to determine whether significant mean differences existed between the two shoe types, a paired t-test was conducted.

Findings

To develop a biodegradable and compostable material that could be used as a leather alternative for the footwear industry, we proposed MBC and examined its properties compared with those of MCP, a product often used when making shoes. These findings confirmed the similar properties of MBC and MCP from the material testing and the possibility of using a men’s sustainable shoe prototype as a leather alternative, in terms of kinematics and kinetics.

Practical implications

The new multi-layered bacterial cellulosic materials (MBC) could be an alternative to commercial leathers such as innovative sustainable material construction, advanced design, and advanced techniques to optimize the overall performance of sustainable footwear.

Originality/value

Investigating the integration of smart textile technologies, ergonomic design principles, and personalized customization will contribute to developing MBC and making sustainable shoes using MBC compared with commercial leather shoes. This study provides valuable insights into further refinement and innovation in the sustainable footwear industry.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 17 April 2023

Laiming Yu, Yaqin Fu and Yubing Dong

The purpose of this study is to improve the mechanical property and processing performance and reduce the cost of the polylacticacid/polybutyleneadipate-co-terephthalate(PLA/PBAT…

Abstract

Purpose

The purpose of this study is to improve the mechanical property and processing performance and reduce the cost of the polylacticacid/polybutyleneadipate-co-terephthalate(PLA/PBAT) composites, the calcium carbonate (CaCO3) and compatibilizer styrene-maleicanhydride copolymer (SMA-2025) were added to the PLA/PBAT system, and the effect of CaCO3 and SMA-2025 on the morphology, structure, mechanical property, thermal property, thermalstability and shape memory property of the CaCO3/PLA/PBAT composites were studied and discussed.

Design/methodology/approach

The CaCO3/PLA/PBAT shape memory composites were prepared via melt-blending and hot-pressing methods, and the effect of CaCO3 and SMA-2025 on the property of the composites was investigated via scanning electron microscope, universal testing instrument, Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis and DMA, respectively.

Findings

The interface property, mechanical property, thermal stability, shape memory recovery ratios and recovery stresses, and processing performance of the CaCO3/PLA/PBAT shape memory composites were significantly improved by adding of CaCO3 and SMA-2025. Moreover, the CaCO3/PLA/PBAT composites have good blowing film processing performance.

Originality/value

This study will provide a reference for the research, processing and application of the high-performance CaCO3/PLA/PBAT shape memory composites.

Details

Pigment & Resin Technology, vol. 53 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 3 May 2024

Cesar Omar Balderrama-Armendariz, Sergio Esteban Arbelaez-Rios, Santos-Adriana Martel-Estrada, Aide Aracely Maldonado-Macias, Eric MacDonald and Julian I. Aguilar-Duque

This study aims to propose the reuse of PA12 (powder) in another AM process, binder jettiinng, which is less sensitive to the chemical and mechanical degradation of the powder…

Abstract

Purpose

This study aims to propose the reuse of PA12 (powder) in another AM process, binder jettiinng, which is less sensitive to the chemical and mechanical degradation of the powder after multiple cycles in the laser system.

Design/methodology/approach

The experimental process for evaluating the reuse of SLS powders in a subsequent binder jetting process consists of four phases: powder characterization, bonding analysis, mixture testing and mixture characteristics. Analyses were carried out using techniques such as Fourier Transform Infrared Spectroscopy, scanning electron microscopy, thermogravimetric analysis and stress–strain tests for tension and compression. The surface roughness, color, hardness and density of the new mixture were also determined to find physical characteristics. A Taguchi design L8 was used to search for a mixture with the best mechanical strength.

Findings

The results indicated that the integration of waste powder PA12 with calcium sulfate hemihydrate (CSH) generates appropriate particle distribution with rounded particles of PA12 that improve powder flowability. The micropores observed with less than 60 µm, facilitated binder and infiltrant penetration on 3D parts. The 60/40 (CSH-PA12) mixture with epoxy resin postprocessing was found to be the best-bonded mixture in mechanical testing, rugosity and hardness results. The new CSH-PA12 mixture resulted lighter and stronger than the CSH powder commonly used in binder jetting technology.

Originality/value

This study adds value to the polymer powder bed fusion process by using its waste in a circular process. The novel reuse of PA12 waste in an established process was achieved in an accessible and economical manner.

Details

Rapid Prototyping Journal, vol. 30 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 20 August 2024

Xin He, Christelle Chretien, Thomas Weathers, Celine Burel, Guillaume Gody and Olivier Back

The purpose of this study is to create sustainable additives for future vehicles, characterized by low levels of sulfated ash, sulfur and phosphorus (SAPS) or even SAPS-free…

Abstract

Purpose

The purpose of this study is to create sustainable additives for future vehicles, characterized by low levels of sulfated ash, sulfur and phosphorus (SAPS) or even SAPS-free alternatives. These newly developed additives must not only match or outperform the current commercial benchmarks in terms of tribological performance, but also align with the emerging sustainability trends. It is anticipated that this innovative technology will yield promising outcomes in the realm of hybrid and electric vehicles.

Design/methodology/approach

This research primarily focused on chemical synthesis, performance evaluation and characterizations. These aspects were studied through collaboration between Syensqo, Southwest Research Institute (the USA) and the Lab of the Future in France. The data was generated and analyzed by a team of research scientists, internship students and technical specialists.

Findings

Two types of additives have been specifically designed and synthesized in accordance with sustainable requirements. Both technologies have exhibited exceptional frictional and wear-resistant properties. Moreover, the leading candidates exhibit a lower rate of copper corrosion, stable electric conductivity and outstanding thermal stability when compared to commercial benchmarks. This study is expected to open a new research avenue for developing next-generation additives for lubricants, with wide potential applications including hybrid electric vehicle and electric vehicle markets.

Originality/value

In the current lubricant market, there is a lack of effective low-SAPS or SAPS-free additives. This research aims to address this gap by designing sustainable additives for next-generation vehicles that not only meet specific requirements but also maintain optimal lubrication performance.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2024-0033/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 August 2024

Valentina Vendittoli, Wilma Polini, Michael S.J. Walter and Jakob P.C. Stacheder

This study aims to address challenges in the Laser Powder Bed Fusion process of polymers, focusing on the considerable amount of unsintered powder left post-printing. The…

Abstract

Purpose

This study aims to address challenges in the Laser Powder Bed Fusion process of polymers, focusing on the considerable amount of unsintered powder left post-printing. The objective is to understand the altered properties of this powder and find solutions to improve the process, reduce waste and explore reusing reprocessed powder.

Design/methodology/approach

A novel methodology is used to generate reprocessed powder without traditional printing, reducing time, cost and waste. The approach mimics the ageing effects during the printing process, providing insights into particle size distribution and thermal behaviour.

Findings

Results reveal insights into artificial ageing, showing an 8.2% decrease in particle size (60.256–69.183 µm) and a 9.1% increase in particle size (17.378–19.953 µm) compared to unsintered powder. Thermal behaviour closely mirrors used powders, with variations in enthalpy of fusion (−0.55% to 2.69%) and degree of crystallinity (0.19% to 2.64%). The proposed methodology produces results that differ from those due to printing under 3% from a thermal point of view. The new process reduces the time needed for aged powder, contributing to cost savings and waste reduction.

Originality/value

The study introduces a novel method for reprocessed powder generation, deviating from traditional printing. The originality lies in artificially ageing powders, providing comparable results to actual printing. This approach offers efficiency, time savings and waste reduction in the Laser Powder Bed Fusion process, presenting a valuable avenue for further research.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 19 July 2024

Alejandro Garcia Rodriguez, Marco Antonio Velasco Peña, Carlos A. Narváez-Tovar and Edgar Espejo Mora

This paper aims to investigate and explain the dual fracture behaviour of PA12 specimens sintered by selective laser sintering (SLS) as a function of wall thickness and build…

Abstract

Purpose

This paper aims to investigate and explain the dual fracture behaviour of PA12 specimens sintered by selective laser sintering (SLS) as a function of wall thickness and build direction with a powder mixture 30:70. To achieve this objective, research related to chemical, thermal and structural behaviours as a function of the input variables was carried out to describe and explain why ductile-fragile behaviour occurs during fractures under uniaxial tension manufactured via a methodology of material analysis and manufacturing processes.

Design/methodology/approach

The factorial design 32 relates the fracture of PA12 tensile specimens to the horizontal, transverse and vertical build directions at 2.0, 2.5 and 3.0 mm thicknesses, respectively. Fractographic images revealed the fracture surfaces and their dual ductile-fragile behaviour related to the specimens’ measured crystalline, thermal, surface and chemical properties.

Findings

The study showed that thermal property variables differ depending on the input variables. The wall thickness variable affected this morphology the most, showing the highest percentage of the ductile area, followed by the transverse and vertical directions. It was determined that the failure in the vertical direction is due to crystalline gradients associated with the layer-by-layer construction process. The pore density may be closely related to generating ductile and brittle areas.

Originality/value

In this paper, fracture characterisation is performed based on the mechanical, chemical, structural, thermal and morphological properties of PA12 manufactured by SLS. In addition, a heatmap of porosities in cross-sections is constructed using a machine learning model (k-means) related to dual fracture behaviour. This research revealed significant differences in the fracture type according to the build direction. In addition, thin-section fractography provides a more detailed explanation of the fragile behaviour of the vertical direction associated with crystalline changes due to the direction of the sintering layers.

Article
Publication date: 16 July 2024

Tarun Pal Singh, Arun Kumar Verma, Vincentraju Rajkumar, Ravindra Kumar, Manoj Kumar Singh and Manish Kumar Chatli

Goat milk yoghurt differs from cow milk yoghurt in that it has a different casein composition and content, which presents several technical challenges, including consistency with…

Abstract

Purpose

Goat milk yoghurt differs from cow milk yoghurt in that it has a different casein composition and content, which presents several technical challenges, including consistency with an appropriate flavor.

Design/methodology/approach

In this study, the antioxidant potential and phytochemical profiling of the fruits (pineapple and papaya) and vegetable (carrot) extracts was evaluated and the effect of their purees on the quality and stability of stirred goat milk yoghurt (GMY) were investigated. The qualities of stirred GMY with carrot (CrY), pineapple (PaY) and papaya (PpY) purees were assessed against the product without puree (CY).

Findings

The carrot puree had the highest moisture, ash contents and pH value. The carrot extract had the highest DPPH radical scavenging activity, while the pineapple extract had the highest total phenolic value (1.59 µg GAE/g) and flavonoids content (0.203 µg CE/g). The scanning of all the puree extracts in GC-MS indicated that 5-hydroxymethylfurfural was a major component. The phytochemical quantification of the extracts through multiple reaction monitoring (MRM) against 16 compounds showed the presence of sinapic acid, cinnamic acid, pthalic acid, ferulic acid, 4-OH-benzoic acid, 3-OH-benzoic acid, p-coumaric acid, caffeic acid and vanillic acid in different quantities. The addition of purees and storage period had a significant (p < 0.05) effect on the moisture, pH, titratable acidity, syneresis, viscosity, color values and sensory properties of the products. In all the samples after 15 days of storage, Streptococcus thermophilus and Lactobacillus bulgaricus counts remained above the recommended level of 106CFU/g. Stirred GMY sample produced with pineapple puree showed a higher syneresis and viscosity, but the CrY sample demonstrated the highest antioxidant activity. The developed formulations remained stable with minimum changes in quality and sensory attribute during refrigerated storage for 10 days.

Originality/value

This study suggests that addition of fruit and vegetable improve the viscosity and sensory perception of the product with minimal use of synthetic flavor and preservatives.

Details

British Food Journal, vol. 126 no. 9
Type: Research Article
ISSN: 0007-070X

Keywords

Article
Publication date: 24 July 2024

Arthur de Carvalho Cruzeiro, Leonardo Santana, Danay Manzo Jaime, Sílvia Ramoa, Jorge Lino Alves and Guilherme Mariz de Oliveira Barra

This study aims to evaluate in situ oxidative polymerization of aniline (Ani) as a post-processing method to promote extrusion-based 3D printed parts, made from insulating…

Abstract

Purpose

This study aims to evaluate in situ oxidative polymerization of aniline (Ani) as a post-processing method to promote extrusion-based 3D printed parts, made from insulating polymers, to components with functional properties, including electrical conductivity and chemical sensitivity.

Design/methodology/approach

Extrusion-based 3D printed parts of polyethylene terephthalate modified with glycol (PETG) and polypropylene (PP) were coated in an aqueous acid solution via in situ oxidative polymerization of Ani. First, the feedstocks were characterized. Densely printed samples were then used to assess the adhesion of polyaniline (PAni) and electrical conductivity on printed parts. The best feedstock candidate for PAni coating was selected for further analysis. Last, a Taguchi methodology was used to evaluate the influence of printing parameters on the coating of porous samples. Analysis of variance and Tukey post hoc test were used to identify the best levels for each parameter.

Findings

Colorimetry measurements showed significant color shifts in PP samples and no shifts in PETG samples upon pullout testing. The incorporation of PAni content and electrical conductivity were, respectively, 41% and 571% higher for PETG in comparison to PP. Upon coating, the surface energy of both materials decreased. Additionally, the dynamic mechanical analysis test showed minimal influence of PAni over the dynamic mechanical properties of PETG. The parametric study indicated that only layer thickness and infill pattern had a significant influence on PAni incorporation and electrical conductivity of coated porous samples.

Originality/value

Current literature reports difficulties in incorporating PAni without affecting dimensional precision and feedstock stability. In situ, oxidative polymerization of Ani could overcome these limitations. However, its use as a functional post-processing of extrusion-based printed parts is a novelty.

Details

Rapid Prototyping Journal, vol. 30 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 11 April 2023

Qi Yang, ZhiQiang Feng, RuanBing Zhang, YunPu Wang, DengLe Duan, Qin Wang, XiaoYu Zou and YuHuan Liu

This study aims to develop a green, economical and efficient ultrasonic-/microwave assisted extraction (UMAE) process for the extraction of anthocyanins.

Abstract

Purpose

This study aims to develop a green, economical and efficient ultrasonic-/microwave assisted extraction (UMAE) process for the extraction of anthocyanins.

Design/methodology/approach

After optimizing the extraction conditions by response surface methodology, three assays including DPPH, ABTS·+, FRAP were applied to analyze the antioxidant activity of the extracted anthocyanins. The stability under different temperatures, reductant concentrations and pHs was also discussed. The components of anthocyanins in blueberry were analyzed by HPLC-QTOF-MS2.

Findings

The optimal extraction parameters were ultrasonic power of 300 W, microwave power of 365.28 W and solid–liquid ratio of 30 (g/mL). The possible structures can be speculated as Delphinidin-3-O-galactoside, Delphinidin, Petunidin, Delphinidin-3-O-glucoside, Petunidin-3-O-glucoside, Cyanidin-3-O-glucoside. The results demonstrated that the UMAE can improve the yield of anthocyanins in shorter extraction time with higher activity.

Originality/value

The present study may provide a promising and feasible route for extracting anthocyanins from blueberries and studying their physicochemical properties, ultimately promoting the utilization of blueberry anthocyanins.

Details

Pigment & Resin Technology, vol. 53 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 9 of 9