Search results

1 – 10 of over 7000
Open Access
Article
Publication date: 10 December 2021

Pingan Zhu, Chao Zhang and Jun Zou

The purpose of the work is to provide a comprehensive review of the digital image correlation (DIC) technique for those who are interested in performing the DIC technique in the…

Abstract

Purpose

The purpose of the work is to provide a comprehensive review of the digital image correlation (DIC) technique for those who are interested in performing the DIC technique in the area of manufacturing.

Design/methodology/approach

No methodology was used because the paper is a review article.

Findings

no fundings.

Originality/value

Herein, the historical development, main strengths and measurement setup of DIC are introduced. Subsequently, the basic principles of the DIC technique are outlined in detail. The analysis of measurement accuracy associated with experimental factors and correlation algorithms is discussed and some useful recommendations for reducing measurement errors are also offered. Then, the utilization of DIC in different manufacturing fields (e.g. cutting, welding, forming and additive manufacturing) is summarized. Finally, the current challenges and prospects of DIC in intelligent manufacturing are discussed.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 2 no. 2
Type: Research Article
ISSN: 2633-6596

Keywords

Content available
Article
Publication date: 1 April 1999

75

Abstract

Details

Industrial Robot: An International Journal, vol. 26 no. 3
Type: Research Article
ISSN: 0143-991X

Open Access
Article
Publication date: 12 August 2022

Bolin Gao, Kaiyuan Zheng, Fan Zhang, Ruiqi Su, Junying Zhang and Yimin Wu

Intelligent and connected vehicle technology is in the ascendant. High-level autonomous driving places more stringent requirements on the accuracy and reliability of environmental…

Abstract

Purpose

Intelligent and connected vehicle technology is in the ascendant. High-level autonomous driving places more stringent requirements on the accuracy and reliability of environmental perception. Existing research works on multitarget tracking based on multisensor fusion mostly focuses on the vehicle perspective, but limited by the principal defects of the vehicle sensor platform, it is difficult to comprehensively and accurately describe the surrounding environment information.

Design/methodology/approach

In this paper, a multitarget tracking method based on roadside multisensor fusion is proposed, including a multisensor fusion method based on measurement noise adaptive Kalman filtering, a global nearest neighbor data association method based on adaptive tracking gate, and a Track life cycle management method based on M/N logic rules.

Findings

Compared with fixed-size tracking gates, the adaptive tracking gates proposed in this paper can comprehensively improve the data association performance in the multitarget tracking process. Compared with single sensor measurement, the proposed method improves the position estimation accuracy by 13.5% and the velocity estimation accuracy by 22.2%. Compared with the control method, the proposed method improves the position estimation accuracy by 23.8% and the velocity estimation accuracy by 8.9%.

Originality/value

A multisensor fusion method with adaptive Kalman filtering of measurement noise is proposed to realize the adaptive adjustment of measurement noise. A global nearest neighbor data association method based on adaptive tracking gate is proposed to realize the adaptive adjustment of the tracking gate.

Details

Smart and Resilient Transportation, vol. 4 no. 2
Type: Research Article
ISSN: 2632-0487

Keywords

Open Access
Article
Publication date: 24 October 2018

Samuel Evans, Eric Jones, Peter Fox and Chris Sutcliffe

This paper aims to introduce a novel method for the analysis of open cell porous components fabricated by laser-based powder bed metal additive manufacturing (AM) for the purpose…

1133

Abstract

Purpose

This paper aims to introduce a novel method for the analysis of open cell porous components fabricated by laser-based powder bed metal additive manufacturing (AM) for the purpose of quality control. This method uses photogrammetric analysis, the extraction of geometric information from an image through the use of algorithms. By applying this technique to porous AM components, a rapid, low-cost inspection of geometric properties such as material thickness and pore size is achieved. Such measurements take on greater importance, as the production of porous additive manufactured orthopaedic devices increases in number, causing other, slower and more expensive methods of analysis to become impractical.

Design/methodology/approach

Here the development of the photogrammetric method is discussed and compared to standard techniques including scanning electron microscopy, micro computed tomography scanning and the recently developed focus variation (FV) imaging. The system is also validated against test graticules and simple wire geometries of known size, prior to the more complex orthopaedic structures.

Findings

The photogrammetric method shows an ability to analyse the variability in build fidelity of AM porous structures for use in inspection purposes to compare component properties. While measured values for material thickness and pore size differed from those of other techniques, the new photogrammetric technique demonstrated a low deviation when repeating measurements, and was able to analyse components at a much faster rate and lower cost than the competing systems, with less requirement for specific expertise or training.

Originality/value

The advantages demonstrated by the image-based technique described indicate the system to be suitable for implementation as a means of in-line process control for quality and inspection applications, particularly for high-volume production where existing methods would be impractical.

Details

Rapid Prototyping Journal, vol. 24 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Content available
Article
Publication date: 24 October 2023

Jared Nystrom, Raymond R. Hill, Andrew Geyer, Joseph J. Pignatiello and Eric Chicken

Present a method to impute missing data from a chaotic time series, in this case lightning prediction data, and then use that completed dataset to create lightning prediction…

Abstract

Purpose

Present a method to impute missing data from a chaotic time series, in this case lightning prediction data, and then use that completed dataset to create lightning prediction forecasts.

Design/methodology/approach

Using the technique of spatiotemporal kriging to estimate data that is autocorrelated but in space and time. Using the estimated data in an imputation methodology completes a dataset used in lightning prediction.

Findings

The techniques provided prove robust to the chaotic nature of the data, and the resulting time series displays evidence of smoothing while also preserving the signal of interest for lightning prediction.

Research limitations/implications

The research is limited to the data collected in support of weather prediction work through the 45th Weather Squadron of the United States Air Force.

Practical implications

These methods are important due to the increasing reliance on sensor systems. These systems often provide incomplete and chaotic data, which must be used despite collection limitations. This work establishes a viable data imputation methodology.

Social implications

Improved lightning prediction, as with any improved prediction methods for natural weather events, can save lives and resources due to timely, cautious behaviors as a result of the predictions.

Originality/value

Based on the authors’ knowledge, this is a novel application of these imputation methods and the forecasting methods.

Details

Journal of Defense Analytics and Logistics, vol. 7 no. 2
Type: Research Article
ISSN: 2399-6439

Keywords

Content available
Book part
Publication date: 30 July 2018

Abstract

Details

Marketing Management in Turkey
Type: Book
ISBN: 978-1-78714-558-0

Open Access
Article
Publication date: 28 June 2022

Olli Väänänen and Timo Hämäläinen

Minimizing the energy consumption in a wireless sensor node is important for lengthening the lifetime of a battery. Radio transmission is the most energy-consuming task in a…

998

Abstract

Purpose

Minimizing the energy consumption in a wireless sensor node is important for lengthening the lifetime of a battery. Radio transmission is the most energy-consuming task in a wireless sensor node, and by compressing the sensor data in the online mode, it is possible to reduce the number of transmission periods. This study aims to demonstrate that temporal compression methods present an effective method for lengthening the lifetime of a battery-powered wireless sensor node.

Design/methodology/approach

In this study, the energy consumption of LoRa-based sensor node was evaluated and measured. The experiments were conducted with different LoRaWAN data rate parameters, with and without compression algorithms implemented to compress sensor data in the online mode. The effect of temporal compression algorithms on the overall energy consumption was measured.

Findings

Energy consumption was measured with different LoRaWAN spreading factors. The LoRaWAN transmission energy consumption significantly depends on the spreading factor used. The other significant factors affecting the LoRa-based sensor node energy consumption are the measurement interval and sleep mode current consumption. The results show that temporal compression algorithms are an effective method for reducing the energy consumption of a LoRa sensor node by reducing the number of LoRa transmission periods.

Originality/value

This paper presents with a practical case that it is possible to reduce the overall energy consumption of a wireless sensor node by compressing sensor data in online mode with simple temporal compression algorithms.

Details

Sensor Review, vol. 42 no. 5
Type: Research Article
ISSN: 0260-2288

Keywords

Open Access
Article
Publication date: 13 April 2022

Shuanggao Li, Zhichao Huang, Qi Zeng and Xiang Huang

Aircraft assembly is the crucial part of aircraft manufacturing, and to meet the high-precision and high-efficiency requirements, cooperative measurement consisting of multiple…

Abstract

Purpose

Aircraft assembly is the crucial part of aircraft manufacturing, and to meet the high-precision and high-efficiency requirements, cooperative measurement consisting of multiple measurement instruments and automatic assisted devices is being adopted. To achieve the complete data of all assembly features, measurement devices need to be placed at different positions, and the flexible and efficient transfer relies on Automated Guided Vehicles (AGVs) and robots in the large-size space and close range. This paper aims to improve the automatic station transfer in accuracy and flexibility.

Design/methodology/approach

A transferring system with Light Detection and Ranging (LiDAR) and markers is established. The map coupling for navigation is optimized. Markers are distributed according to the accumulated uncertainties. The path planning method applied to the collaborative measurement is proposed for better accuracy. The motion planning method is optimized for better positioning accuracy.

Findings

A transferring system is constructed and the system is verified in the laboratory. Experimental results show that the proposed system effectively improves positioning accuracy and efficiency, which improves the station transfer for the cooperative measurement.

Originality/value

A Transferring system for collaborative measurement is proposed. The optimized navigation method extends the application of visual markers. With this system, AGV is capable of the cooperative measurement of large aircraft structural parts.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 3 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 13 November 2018

Han Wu, Tao Wang, Tuo Dai, Xiaoyu Wang, Yuanzhen Lin and Yizhou Wang

This paper aims to design a vision-based non-contact real-time accurate heart rate (HR) measurement framework for home nursing assistant.

Abstract

Purpose

This paper aims to design a vision-based non-contact real-time accurate heart rate (HR) measurement framework for home nursing assistant.

Design/methodology/approach

The study applied Second-Order Blind Signal Identification (SOBI) algorithm to extract remote HR signal and analyzed it with Fast Fourier Transform (FFT). Multiple regions of interest are chosen and analyzed to obtain a more accurate result.

Findings

An accurate non-contact hear rate (HR) measurement framework is proposed and proved to be efficient.

Originality/value

The contributions of this HR measurement framework are as follows: accurate measurement of HR, real-time performance, robust under various scenes such as conversation, lightweight computation which is suitable and necessary for home nursing assistance. This framework is designed to be flexibly used in various real-life scenes such as domestic health assistance and affectively intelligent agents and is proved to be robust under such scenes.

Details

International Journal of Crowd Science, vol. 2 no. 3
Type: Research Article
ISSN: 2398-7294

Keywords

Open Access
Article
Publication date: 2 July 2020

Zheming Yang and Wen Ji

The multiple factors of intelligence measurement are critical in intelligent science. The intelligence measurement is typically built as a model based on multiple factors. The…

Abstract

Purpose

The multiple factors of intelligence measurement are critical in intelligent science. The intelligence measurement is typically built as a model based on multiple factors. The different agent is generally difficult to measure because of the uncertainty between multiple factors. The purpose of this paper is to solve the problem of uncertainty between multiple factors and propose an effective method for universal intelligence measurement for the different agents.

Design/methodology/approach

In this paper, the authors propose a universal intelligence measurement method based on meta-analysis for crowd network. First, the authors get study data through keywords in the database and delete the low-quality data. Second, they compute the effect value by odds ratio, relative risk and risk difference. Then, they test the homogeneity by Q-test and analyze the bias by funnel plots. Third, they select the fixed effect and random effect as a statistical model. Finally, through the meta-analysis of time, complexity and reward, the weight of each factor in the intelligence measurement is obtained and then the meta measurement model is constructed.

Findings

This paper studies the relationship among time, complexity and reward through meta-analysis and effectively combines the measurement of heterogeneous agents such as human, machine, enterprise, government and institution.

Originality/value

This paper provides a universal intelligence measurement model for crowd network. And it can provide a theoretical basis for the research of crowd science.

Details

International Journal of Crowd Science, vol. 4 no. 3
Type: Research Article
ISSN: 2398-7294

Keywords

1 – 10 of over 7000