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Abstract
Purpose –Minimizing the energy consumption in a wireless sensor node is important for lengthening the lifetime of a battery. Radio transmission is
the most energy-consuming task in a wireless sensor node, and by compressing the sensor data in the online mode, it is possible to reduce the
number of transmission periods. This study aims to demonstrate that temporal compression methods present an effective method for lengthening
the lifetime of a battery-powered wireless sensor node.
Design/methodology/approach – In this study, the energy consumption of LoRa-based sensor node was evaluated and measured. The
experiments were conducted with different LoRaWAN data rate parameters, with and without compression algorithms implemented to compress
sensor data in the online mode. The effect of temporal compression algorithms on the overall energy consumption was measured.
Findings – Energy consumption was measured with different LoRaWAN spreading factors. The LoRaWAN transmission energy consumption
significantly depends on the spreading factor used. The other significant factors affecting the LoRa-based sensor node energy consumption are the
measurement interval and sleep mode current consumption. The results show that temporal compression algorithms are an effective method for
reducing the energy consumption of a LoRa sensor node by reducing the number of LoRa transmission periods.
Originality/value – This paper presents with a practical case that it is possible to reduce the overall energy consumption of a wireless sensor node
by compressing sensor data in online mode with simple temporal compression algorithms.
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1. Introduction

Sensors are fundamental components of internet of things (IoT)
design. According to a report published in 2021, 40% of IoT
engineers use environmental sensing in their IoT design, and only
14% do not use sensor technology at all in their IoT design
(Farnell, 2021). Typical applications using environmental
sensing are, for example, different home control-related
applications where the sensors are measuring, for instance, air
quality, temperature, humidity and air pressure. Environmental
sensors are also widely used in industrial applications and
particularly in agricultural applications. In agriculture, precision
agriculture (PA) requires up-to-date information from the
environment and from the field for decision-making to improve
quality and production (Jawad et al., 2017).
Most IoT solutions use wireless connections between the

edge device, gateway and cloud. According to the Farnell
report, 77% of the engineers who responded to a survey used a
wireless connection in their IoT design. Only 23% use wired

connectivity (Farnell, 2021). Sensors and wireless sensor
networks (WSNs) are fundamental technologies, for example,
in smart environment monitoring systems. Smart environment
monitoring systems can be used in agriculture for smart
farming and for monitoring air quality, water pollution and
radiation pollution (Ullo and Sinha, 2020).
Globally, there are already more IoT devices than people. It

is estimated that the number of IoT devices will triple from 8.74
billion in 2020 to more than 25.4 billion in 2030 (Farnell,
2021). IoT devices are often battery-powered and will be used
in every area of our lives. Therefore, the energy consumption of
IoT devices is an important issue. By minimizing the energy
consumption, it is possible to lengthen the device or battery
lifetime, thus reducing the overall costs. At the same time, it is a
well-known fact that the wireless connectivity is the single most
energy-consuming task in a wireless IoT sensor node. Themost
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energy-consumingmodes in wireless sensor nodes are when the
radio is transmitting, receiving or idle mode (Harrison et al.,
2016; Lin et al., 2021). According to Farnell report (Farnell,
2021), Wi-Fi is the most popular type of wireless connectivity
followed by cellular (4G/LTE/5G), Bluetooth low-energy and
LoRa. LoRa is a low-power wide-area network technology that
is well suited for energy-constrained sensor devices located far
from the base station.
In IoT home applications, it is rather easy to power the

devices from the mains power supply, but even these are often
battery-powered for installation simplicity. In many other
sectors, it is not even possible to use the mains power supply to
power the devices. Typical applications where the devices need
to be battery-powered or energy-harvesting powered are, for
example, different agricultural and environmental monitoring
applications where IoT devices can be spread to a
geographically wide area in the field (Prauzek et al., 2018).
There are many methods for reducing the overall energy

consumption of a wireless sensor node. Wireless sensor nodes
consume energy mainly in sensing, processing and data
communication. At other times, it can be in the sleep mode
(Lin et al., 2021). The effective use of sleep modes between
sensor measurements is a significant method for reducing
energy consumption (Väänänen and Hämäläinen, 2021).
Another method to reduce energy consumption in IoT sensor
nodes is to lengthen the sampling interval, thus keeping the
device in sleep mode for longer periods (Lin et al., 2021). This
also reduces the number of transmitting periods with a wireless
connection; thus, it is a very effective way to reduce energy
consumption. Lengthening the sampling interval results in
lower precision in the measured data, as it is not possible to
detect sudden and rapid changes when they occur between
measurements. It is impossible to obtain any information
regarding the measured magnitude changes and the direction
of change betweenmeasurements.
Different sensor data compression methods are one solution

to improve this situation. It is possible to compress the raw
sensor data in the sensor node, thus reducing the amount of
data required to transmit via wireless connection (S�ac�aleanu
et al., 2018). It is also possible to reduce the number of
transmitting periods by using a temporal compression
algorithm, and at the same time, obtain the information if the
measured values change rapidly. Many temporal compression
methods are computationally light and simple. These methods
can be used for IoT devices that are computationally
constrained and have limited energy resources.
In this study, the energy consumption of LoRa sensor node

with different LoRa modulation parameters and temporal
compression algorithms was evaluated with practical
measurements. This study demonstrates that the sleep mode
energy consumption, LoRa modulation parameters and
compression algorithm used have a significant effect on the
overall energy consumption of an IoT sensor node. The
remainder of this paper is organized as follows. The LoRa and
LoRaWAN wireless IoT protocols and their basic parameters
are presented in Section 2. Section 3 presents the basics of
temporal compression algorithms, and the implemented
compression algorithms are presented in more detail. The test
and measurement setup and measurement challenges are
presented in Section 4. The measurement results with different

LoRa parameters and implemented algorithms are discussed in
Section 5. The combined results and overall energy
consumption with different LoRa parameters and algorithm
combinations are presented in detail in Section 6. Finally,
Section 7 concludes the paper.

2. LoRa and LoRaWAN

LoRaWAN is a low-power wide-area (LPWA or LPWAN)
networking protocol developed to be an energy-efficient
wireless protocol to connect battery-powered IoT devices to the
internet (LoRa Alliance, What is LoRaWAN Specification).
LoRaWAN is optimized to extend the battery lifetime, capacity
and range of IoT devices as well as tominimize costs.
Several other wireless technologies are available for use in

IoT devices. Wi-Fi and Bluetooth low energy are widely used
for communication in personal devices, especially for short
distances. Cellular technology is suitable for applications in
which a large amount of data must be transmitted over a long
range. LoRa offers very low power consumption and a long
range for transmitting sensor data a few times per hour (LoRa
Alliance, What is LoRaWAN Specification). Another low-
power and long-range wireless technology is the SIGFOX.
Both LoRa and SIGFOX are asynchronous technologies;
therefore, nodes can be in sleep mode and wake up only when
there is a need to transmit data (Morin et al., 2017). Each
wireless technology has its own characteristics, advantages and
disadvantages. Thus, there is not one single technology suitable
for every application. LoRa is a very potential technology for
sensor devices when the transmitted amount of data is rather
limited and low-energy consumption is required. Commercial
LoRa networks have good geographical coverage. For example,
in Finland, the commercial network is operated by Digita, and
its network covers almost the entire country if a terminal device
is located outdoors (Digita, LoRaWAN network coverage in
Finland). Even for indoor devices, the network covers most of
the country.
LoRa is a physical layer that includes wireless modulation,

enabling long-range connectivity. LoRa uses chirp spread
spectrum (CSS) modulation, which enables low power
consumption and long range in wireless connectivity at the
same time (LoRaAlliance,What is LoRaWANSpecification).
LoRaWAN is a communication protocol and system

architecture that uses the LoRa physical layer to achieve a low-
power operation and a long communication range. LoRaWAN
network uses a star topology in which the nodes are not
associated with a specific gateway/base station. The transmitted
data can be received by several base stations, and the network
side removes redundant packets (Lora Alliance, What is
LoRaWANSpecification).
Three different device classes are described in the LoRaWAN

protocol. The most energy efficient of the three classes is Class
A. The Class A device does not listen to the downlink messages
from the network, except for two short time windows after every
uplink transmission (LoRa Alliance, What is LoRaWAN
Specification). Thus, between the transmitting periods, the
device and LoRa radio can be in sleep mode. In addition to
effective modulation, operation at the sub-GHz level enables a
long communication range. LoRa communication uses an
unlicensed industrial, scientific and medical band (Lavric and
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Popa, 2018). Sub-GHz frequency range helps signal
penetration through the obstacles between the device and base
station. Sub-GHz frequency and LoRa modulation enable the
long range as well as the good network coverage for devices
located indoors.
The CSS modulation spreads the narrowband signal over a

large frequency band, thus enabling the signal to be very
resistant to noise and immune for interference (Lavric and
Popa, 2018). In LoRa CSSmodulation, the spread spectrum is
achieved with a chirp signal that continuously varies its
frequency (Semtech, What are LoRa and LoRaWAN). LoRa
supports spreading factors (SFs) from 6 to 12. The higher SF
allows a longer range, but it also results in higher time on air
(ToA) values and lower data rates (DRs) (Lavric and Popa,
2018; Semtech,What are LoRa andLoRaWAN). For example,
according to Semtech (Semtech, What are LoRa and
LoRaWAN), the range with the upper link SF10 is 8 km, but
with SF7, the range is only 2 km. These values are examples
and vary greatly depending on the circumstances. The ToA is
correspondingly 371ms with SF10 and 61ms with SF7. The
range depends significantly on the terrain, but this provides an
idea of the SF effect on the range.
The LoRa nodes have the possibility of setting theDR from 0

to 6. The DR represents a predefined set of LoRa settings such
as the SF (Lavric and Popa, 2018). The LoRa specification
describes the DR settings as presented in Table 1 (LoRa
Alliance, RP002-1.0.0 LoRaWAN Regional parameters). The
configuration column presents the SF and channel width.
The LoRaWAN protocol defines an adaptive DR (ADR)

mechanism, which optimizes the DR used. LoRa devices
located close to the base station do not require a high link
budget that is with SF12. ADR optimizes the SF used and
minimizes the ToA. The ADR has simple rules for changing the
DR used. If the link budget is high, then the SF can be
increased and vice versa (Semtech, What is an ADR). It is also
possible to set the LoRa node to use a certain DR, but the ADR
is designed to optimize the SF and ToA, and thus, it should be
the recommended setting. The ADR scheme maximizes
the battery lifetime. LoRaWAN also supports optional
acknowledgments (ACK) and message retransmissions. The
LoRaWAN node can indicate whether an ACK is requested in
each transmission. If ACK is required, the node is expecting to
receive ACK (confirmation) in one of the two receive windows
after message transmission. If the ACK is not received, the
LoRaWAN node retransmits the message with the same DR as
originally, and then DR decreases every two attempts to lower
DR until DR = 0 if the ACK is not received. (Casals et al.,
2021). If the ACK is not requested, the LoRaWAN node

listens to the possible downlink message from the network in
any case but does not retransmit the message if the
confirmation is not received. The LoRa network server can
send a downlinkmessage even if it is not requested.

3. Temporal compression methods

Many temporal compression methods are well suited for
sensor-based 1D data. Data compression is a common method
for reducing data size. Compression methods can be divided
into lossless and lossy methods. The compression ratios
achieved are not very high with lossless methods (Lin et al.,
2019). Lossy algorithms can achieve a compression ratio that is
several times higher than that of lossless algorithms, but with
the cost of reconstruction error (Lu et al., 2021). There is often
a temporal correlation in sensor data if the observation window
is short. Temporal compression methods use this temporal
correlation (Lin et al., 2019).
The temporal compression methods used in this study are

simple and computationally lightweight compression
algorithms. The methods used in this study are based on data
linearity. The environmental magnitudes behave rather linearly
if the observation window is short. For example, air
temperature in a shadow does not change significantly in
seconds. It normally requires minutes to observe the
temperature change, even when it is changing at its extreme
speed. If the temperature is rising, it changes quite linearly as it
behaves similarly also if it is going down.
The compression methods used in this study either find

linear segments from the sensor data stream with certain error
bound or use linear regression from previous values to predict
future values with allowing certain error bound. Thus, the
compressed data set loses some information. These methods
are computationally light and thus suitable for constrained
battery-powered IoT sensor nodes. These methods are also
easy to understand and implement.
The compression algorithms used in this paper were

lightweight temporal compression (LTC) and two versions of
the real-time linear regression-based temporal compression
(RT-LRbTC). The two versions of the RT-LRbTC vary from
each other by the number of sensor values used to calculate the
regression line. Three and four values (N values) versions were
tested.

3.1 Lightweight temporal compression
The LTC is a well-known compression algorithm that is
particularly suitable for environmental data. It was first
presented by Schoellhammer et al. (2004). It has also been used
to compress sensor data in wireless body sensor networks
(WBSN) (Giorgi, 2017). Several modifications of the original
LTC have been presented (Parker et al., 2013; Azar et al., 2018;
Sarbishei, 2019; Li et al., 2018; Klus et al., 2021).
LTC has proven to be a very effective compression

algorithm, particularly for linearly behaving environmental
sensor data (Väänänen and Hämäläinen, 2019). One major
disadvantage of LTC is its unpredictable latency. As the LTC
compresses the data in the online mode by finding the best and
longest linear segment from the incoming sensor data, it sends
the linear segment endpoint to the sink only when the algorithm
finds it as the new value falls off from the linear segment. If the

Table 1 LoRaWAN DR settings

DR Configuration Physical bit rate (bit/s)

0 SF12/125 kHz 250
1 SF11/125 kHz 440
2 SF10/125 kHz 980
3 SF9/125 kHz 1,760
4 SF8/125 kHz 3,125
5 SF7/125 kHz 5,470
6 SF7/250 kHz 11,000
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method compresses the data very efficiently, then the
transmitting intervals become long, and the receiving side does
not even know in which direction the values are changing.
Thus, LTC is not well suited for compressing sensor data in
real-time or near-real-time applications (Giorgi, 2017).
In this study, the LTC was used as in its original version

presented by Schoellhammer et al. (2004). The same version
was used by Väänänen and Hämäläinen (2019, 2020) as
MATLAB version. In this study, the LTCwas programmed for
the Arduino and implemented on the Arduino MKR WAN
1310 LoRa board.
The LTC itself is computationally light because with every

new value, it is only necessary to make a comparison between
the new value with error bound extremes and the previously
calculated upper and lower limit lines. As a result of the
comparison, a maximum of two new lines must be calculated to
create new upper and lower limit lines that will be used with the
next value. Calculating the new limit line parameters (slope and
y-intercept) requires one division, one multiplication, one
summation and subtractions, thus resulting in a
computationally simple algorithm.

3.2 Real-time linear regression-based temporal
compression
RT-LRbTC uses linear regression calculated from previous
sensor values to predict future sensor values. This type of
compression algorithmworks well if themeasured data behaves
rather linearly. This is the case for many environmental
magnitudes, such as temperature, humidity and air pressure.
RT-LRbTC is based on several other simple linear

regression-based algorithms. Other simple linear regression-
based compression algorithms have also been developed
(Väänänen and Hämäläinen, 2019; Hung et al., 2013;
Duvignau et al., 2019). RT-LRbTCwas originally presented by
Väänänen and Hämäläinen (2020). RT-LRbTC was
developed especially for compressing sensor data in online
mode. It has a shorter inherent latency than other linearity-
based compression methods, which is its most significant
benefit compared to other methods (Väänänen and
Hämäläinen, 2020).
The inherent latency of the RT-LRbTC algorithm is one

measurement interval Dt in the linear section. The algorithm uses
N previously measured values to calculate the regression line,
which predicts future values with a certain error bound («)
allowed from the line.Newmeasured sensor value is compared to
the previously calculated regression line. If the difference from
the line is smaller than « , then the algorithm waits for the next
measured value. When the new value falls off from the linear
section (distance greater that the error bound « from the line),
then the new line is calculated from the values already available.
From the calculated line, the line parameters and time stamp are
sent/stored. On the network side, if new parameters are not
received, then the values follow the previous regression line with
the error bound allowed. N is a minimum of three, and in this
study, N was three and four (two versions). Calculating the new
regression line requires some calculation: the sum of N times xk,
xk

2, yk, xkyk and the square of the sum of xk. xk is the time stamp
(sample number) and yk is the measured value.N = 3 is the basic
form of RT-LRbTC, and N = 4 version was also tested in this

study to see whether the required calculations had any effect on
the overall energy consumption.
The RT-LRbTC algorithm was tested with real measured

temperature data by Väänänen and Hämäläinen (2020). In the
data sets used, the measurement interval was 10min. The data
sets were obtained from the Finnish Meteorological Institute’s
open data service. The data sets used were two full-year data
sets with a 10-min measurement interval. As a result, with 0.5°
C error bound, the RT-LRbTC algorithm has achieved
compression ratio CR = 5.5–6.0 (Väänänen and Hämäläinen,
2020). The error bound « = 0.5°C represents the maximum
difference between the original measured values and
reconstructed values from the compressed data. The average
reconstruction error is smaller than the error bound used. The
compression ratio achieved with a certain linearity-based
compression algorithm depends on the measured magnitude
characteristics and error bound used. A higher error bound
results in a better compression ratio, but with the cost of a
larger reconstruction error.

4. LoRa device energy consumption with
compression algorithm implemented

The LoRa SF used determines the ToA and thus it also
determines how much energy a transmission consumes. This is
because if the ToA is longer, then the LoRa radio is
transmitting for a longer time and consumes energy for a longer
time as well.
Väänänen and Hämäläinen (2021) measured the LoRa

device energy consumption with ADR set on, and thus, the
LoRa device was transmitting with a DR of 2 (SF10). The
device was in a stable place, and thus, the conditions did not
change, and the DR remained constant. The only difference
between the energy consumption of the transmitting periods is
the difference between whether the downlink is received or not.
If the downlink is received, the energy consumption increases
as the device receives the data. If the downlink is not received,
then the LoRa device only listens shortly during the two receive
windows, and the overall energy consumption is lower. The
downlink message is used by the network server for
acknowledgemessages (ACK) (Maudet et al., 2021).
In this study, a setup similar to that of Väänänen and

Hämäläinen (2021) was used for the practical experiments and
energy consumption measurements. In this study, the ADR was
not on, and the DR was set (fixed) for every transmitting period.
TheDRs tested ranged fromDR0 toDR5. All of these DRs have
a channel width of 125kHz. The downlink SF was automatically
set from the network and was not controlled in this study.
Normally, a downlink message has the same SF as an uplink
message if the first receive window is used. For the second receive
window, the SF12 is used as the default (Casals et al., 2021).
The LoRa device used was Arduino MKRWAN 1310 board.

The Arduino MKR WAN 1310 has a Microchip SAM D21 32-
bit Arm Cortex-M01 based microcontroller and a Murata
CMWX1ZZABZ LoRa module (Arduino MKR WAN 1310).
The Arduino MKR WAN, 1310 was chosen because of its
simplicity and ease of use. It is also very popular among hobbyists
but is also widely used in industry for piloting and experiments.
The temperature was measured using a DHT22 sensor. The

DHT22 also measures humidity, but for this experiment, only
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temperature was used. DHT22 is a low-cost sensor with a
digital output. DHT22 sensor has measurement resolution for
temperature 0.1°C and its accuracy is < 60.5°C (DHT22
temperature and humidity sensor). Another popular and rather
similar temperature and humidity sensor is DHT11, which is
often used in agricultural applications (Rehman et al., 2022). In
this study, DHT22 was chosen because it is slightly more
accurate and has wider measurement ranges; however, it is only
slightly more expensive. It is well suited for this type of
experiment, where the accuracy requirement is not high.
The Arduino MKR WAN 1310 was powered by a 2,000

mAh lithium-polymer (LiPo) battery. The LiPo battery has a
3.7V nominal voltage, resulting theoretically 7.4Wh total
energy capacity, which equals 26,640 Ws. The battery has a
JST-PH connector that can be directly used with the Arduino
MKR WAN 1310 board. The energy consumption of the
Arduino board is lower when powered by a battery than when
powered by the USB port. If the board is powered by the USB
port, then one LED is always ON, and also USB IC-chip
consumes extra energy. The device setup is illustrated in
Figure 1. The setup was built for this experiment only, but it
could be used in real practical case when enclosed properly
against environmental conditions.

4.1Measurement setup
For the experimental energy consumption measurements, the
Arduino board was set to measure the temperature with the
DHT22 sensor at regular intervals. After each measurement,
the compression algorithm was applied by microcontroller. If
the result of the algorithm required data transmission, then the
data were sent via the LoRa connection. After every
measurement event and possible data transmission, the device
was set to go to deep-sleep mode. The device woke up only for
the measurement, compression algorithm and possible
transmission periods. The LoRa network was a commercial
network operating in Finland.
The current consumption in the active mode was measured

using a shunt resistor. Two oscilloscope channels were used to
measure the voltage across a 10 X shunt resistor, which was in
series at the battery plus wire. Both oscilloscope channels used
battery negative terminal as the reference level. The
measurement setup is illustrated in Figure 2(a). Current

consumption was calculated from the measured voltages I =
(V1 –V2)/R, whereR is the shunt resistor (10X).V2 can also be
used to measure the supply voltage in the battery connection of
the board. Thus, the power consumption of the device is:

P ¼ V � I ¼ V2 � V1 � V2ð Þ
R

(1)

In a previous study by Väänänen and Hämäläinen (2021),
current was measured using an oscilloscope current probe.
That kind of setup is shown in Figure 2(b), where the ammeter
is the current probe. The current probe is very easy to use, but
its accuracy is poor when measuring low-level values. The
shunt resistor measurement of the current is more accurate and
repeatable. The results obtained by Väänänen and Hämäläinen
(2021) were used in this paper for comparisonwhen available.
In this study, the current consumption in the deep-sleep

mode was measured using a digital multimeter (DMM) in
series with a battery wire. The DMM is more accurate for
measuring low-level deep-sleep current than the shunt resistor
method used for active periods. A high-quality DMM can
reliably measure mA level current value if it remains stable. The
DMM cannot be used to measure current consumption for
active periods because the current level is changing and does
not remain static.
The device used for themeasurements was a TektronixMSO

4104 mixed signal oscilloscope with a 1GHz measurement
bandwidth, and the probes used were TAP1500 active voltage
probes. The voltage in the battery connector of the board was
also measured separately using a Tektronix P6139A passive
voltage probe. The DMM used was a Tenma RS232C
TrueRMSmodel.

5. Measurement results

The measurements were carried out without implementing a
compression algorithm and with compression algorithms to see
whether the algorithm calculations have any effect on energy
consumption. The energy consumption for sensor
measurement and algorithm calculations was measured with all

Figure 1 Arduino MKRWAN 1310 in test setup

Figure 2 Current consumption measurement circuits

Temporal sensor data compression

Olli Väänänen and Timo Hämäläinen

Sensor Review

Volume 42 · Number 5 · 2022 · 503–516

507



algorithm combinations and without an algorithm.
Transmission energy consumption was measured using two
different payloads. If the measured raw or compressed value is
sent with a time stamp, only 8 bytes are needed to transmit.
This is the case without a compression algorithm or with the
LTC algorithm. With the RT-LRbTC algorithm, a total of
12bytes are transmitted because two line parameters (slope
and base) and a time stamp are needed to transmit.
Figure 3 presents the overall LoRa sensor node energy

consumption scenario over time. Number 1 in Figure 3
represents deep-sleep energy consumption (base consumption).
Number 2 represents the extra energy consumption of the sensor
measurement and data processing (with or without the
compression algorithm implemented). It occurs at regular
intervals that are determined by the measurement interval.
Number 3 represents the energy consumption of the LoRa
transmission. LoRa transmission is required after every
measurement event if no compression algorithm is implemented.
If a compression algorithm is implemented, LoRa transmission
does not occur after every measurement event. The deep-sleep
energy consumption is presented here as existing all the time, and
the measurement events and LoRa transmissions were presented
and measured as extra energy consumption on top of deep-sleep
base energy consumption. When the device is measuring or
transmitting, it is not in deep-sleep mode, but for measurement
purposes, this type of presentation is easier. In any case, the deep-
sleep power consumption is a fraction of the measurement event
and/or transmitting event power consumption.

5.1 Deep-sleep current consumption
The deep-sleep current consumption was measured without
implementing an algorithm, and the result was confirmed with
algorithms implemented. As the device was in deep-sleep mode,
there was no difference if the algorithm was implemented or not.
The device was set to go into deep-sleep mode between the
measurement periods. A similar setup was used by Väänänen and
Hämäläinen (2021), and the results obtained in this studywere in
same level. The measured deep-sleep current was 106–107mA.
When the device goes into deep-sleep mode, the current drops
immediately to 150–160mA, and after 10–20 s, it reaches
107 mA level. The voltage in the battery connector of the board
was measured with an oscilloscope at the same time. The battery
voltage was 3.99V in this case, thus resulting in deep-sleep power
consumption Pds = Vbattery·Ids = 3.99V � 117·10�6 A =
4.6683·10�4W=0.46683mW.

5.2 Sensormeasurement and algorithm energy
consumption
As the measurement interval is typically minutes, the sensor
node remains most of the time in deep-sleep mode, but it wakes
up with a regular basis to perform the measurement and
algorithm calculations. If the result from the algorithm

calculation is that there is no need to transmit any data, then the
device returns to the deep-sleep mode. The real-time clock
(RTC) runs even in deep-sleep mode and wakes the device up
on a regular basis, which is determined by the measurement
interval.
The energy consumed by the sensor measurement, and

possible algorithm was measured with the oscilloscope using a
shunt resistor, as explained in the measurement setup section.
The oscilloscope measurement results are shown in Figure 4.
Channels 2 and 3 (blue and purple lines on top of one another)
were used to measure the voltage difference across the shunt
resistor. Channel 4 (green line) measured the voltage in the
battery connector. The power line (red MATH-line in mW)
was calculated using the oscilloscope MATH-function from
Channels 2, 3 and 4 data: P =U � I = CH4 � ((CH2 – CH3)/
10). CH2-CH3 denotes the voltage across the shunt resistor.
10 is the resistor size in ohms. The oscilloscope measurement
function was used to calculate the MATH line area (integral),
which is the total energy consumed in the oscilloscope window
timescale (5.022 mWs during 2 s in Figure 4). Then, the
average value of the red MATH-line was measured before the
measurement event (device wake up) when the device was in
deep-sleep mode. The average deep-sleep value (average
power) was multiplied by the timescale used in the oscilloscope
screen (2 s in Figure 4) to obtain the base energy consumed,
which was subtracted from the total energy measured (5.022
mWs in Figure 4). Thus, additional energy consumption from
the sensormeasurement and data processing wasmeasured.
The same measurement was repeated a minimum of ten

times for each algorithm implemented as well as without the
algorithm implemented. The measurement results are listed in
Table 2. The average value was calculated from all
measurements using a certain algorithm (a minimum of ten
measurements with each algorithm).Max andMin values show
the maximum and minimum measured values, and Std Dev is
the standard deviation calculated from all the measured values
with the certain algorithm implemented. Last row presents
measurement results with current probe (Väänänen and
Hämäläinen, 2021). Figure 5 shows the average results with the
maximum, minimum and standard deviation values for each
algorithm.
It can be seen from the results presented in Table 2 and

Figure 5 that the effect of the algorithm on the measurement and
data acquisition event energy consumption is negligible. The
algorithms implemented and evaluated were computationally so
light that the possible effect on the energy consumption was
smaller than themeasurement inaccuracy.

5.3 LoRa transmission energy consumption
The scenario for the LoRa transmission energy consumption is
shown in Figure 6 (as a function of time). Number 1 in the
figure is the base energy consumption, which is the deep-sleep
energy consumption. Number 2 represents the sensor
measurement, data acquisition and algorithm energy
consumption in addition to base energy consumption. Number
3 is the LoRa transmission uplink, and number 4 is the LoRa
transmission downlink if received (in Figure 3, the uplink and
downlink energy consumptions are combined and presented by
number 3).

Figure 3 LoRa sensor node overall energy consumption scenario
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In this measurement setup, the overall energy consumption
was measured using the oscilloscope from the timescale that
was visible on the oscilloscope screen. The oscilloscope
MATH-function was used to calculate the overall power
(red MATH-line in Figures 7, 8 and 9) line in mW, and its
area (integral) was calculated using the oscilloscope
measurement function (in mWs). Then, the average base
power level was measured using the oscilloscope ZOOM
function from the time before the device wakes up (in deep-

sleep mode). The average power was used to calculate the
average base energy consumption at that timescale
(oscilloscope screen, 10 s in Figures 7, 8 and 9). This
average base energy (number 1 in Figure 6) was subtracted
from the overall measured energy consumption. This results

Figure 4 Sensor measurement and data processing energy consumption

Table 2 Sensor measurement and algorithm energy consumption with
and without algorithms implemented. Results are in mWs

No
compression

(mWs)

RT-LRbTC,
N = 3
(mWs)

RT-LRbTC,
N = 4
(mWs)

LTC
(mWs)

Max 5.05 5.24 5.22 5.30
Average 4.88 4.96 4.98 4.95
Std dev 0.11 0.18 0.16 0.16
Min 4.70 4.64 4.68 4.75
From current probe
measurement

4.57 4.78 4.83 4.78

Figure 5 Sensor measurement and possible algorithm overall energy
consumption
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in extra energy that the sensor, algorithm and LoRa
transmission add to the base energy consumption.
The sensor measurement and algorithm effect (Table 2,

which is number 2 in Figure 6) was then subtracted from the
measurement results, resulting in transmission-only energy
consumption. LoRa transmission energy consumption was
measured for 8 bytes (for LTC and no compression cases)
and 12 bytes (for RT-LRbTC cases) payload situations with
every SF (SF7-SF12). The DR can be adjusted in Arduino
MKRWAN 1310 by enabling ADR and setting a certain DR
value:
� modem.setADR(true); and
� modem.dataRate (0);//set data rate to be 0-5.

This needs to be done before every transmission period when
the radio wakes up. The total transmission energy consumption
for every SF case was measured a minimum of ten times, and
the average values are listed in Table 3.
The significant differences in energy consumption

depending on the SF used can be seen in Table 3. The
downlink was sent from the network side every time, even
though the ACK was not required, but quite often, it was not
received. If the downlink is not received, then the transmission
period energy consumption is lower, but that situation should
not be the normal case. If these values are used to predict the
device lifetime, the values with the downlink received should be
used as the worst case for the energy consumption.
The difference between the received and unreceived

downlinks can be seen in Figures 7 and 8. In Figure 8, the LoRa
radio opens two short receive windows after transmission. The
first receive window is approximately 1 s after the transmission,
and the second window is 1 s after the first window. In Figure 7,
the LoRa radio opens the first receive window 1 s after
transmitting, and in this case, the LoRa radio receives the
downlink message. The SF effect on the ToA is shown in
Figures 7, 8 and 9. In Figures 7 and 8 with SF12, the
transmission takes approximately 1,500ms, while with SF8 (in

Figure 6 LoRa node energy consumption scenario

Figure 7 Lora transmission (8 bytes) with uplink SF12 and downlink SF12
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Figure 9), it takes approximately 100–200ms. That explains
the significant difference in energy consumption.

6. Overall energy consumption and average
power consumption

The overall energy consumption of the LoRa sensor node is a
combination of deep-sleep consumption, measurement event
consumption, algorithm execution and possible LoRa
transmission. In this study, the sensor measurement event and
the algorithm execution were combined. The sensor
measurement and algorithm calculations (WM) take place on a
regular basis and are determined by the measurement interval
(Dt). The LoRa transmission event (energy consumed WS) is
determined by the measurement interval but also by the
compression ratio (CR) that the algorithm achieves. The overall
energy consumed during time tx can be estimated using
equation (2):

Wtot ¼ Pdstx 1
tx
Dt

WM 1
tx

CR� Dt
Ws (2)

where Pdstx is the energy consumed by the device in the deep-
sleep mode during time tx. tx/Dt is the number of measurement

periods. tx/(CR � Dt) is the number of transmission periods. It
can be seen from the equation that it is possible to minimize the
overall energy consumption either by lengthening the
measurement interval or using a compression algorithm, which
results in a high compression ratio for the measured data
stream. Other possibilities would require different hardware
solutions.
If the total available energy is known (battery capacity for

example), then the overall lifetime can be solved from
equation (2):

tx ¼ WToT

Pds 1
WM
Dt 1 WS

CR�Dt
(3)

The average power consumption can be derived from
equation (2) by dividing by time tx as P =W/t. Resulting in
equation (4):

Pavg ¼ Pds 1
WM

Dt
1

WS

CR � Dt (4)

The DHT22 temperature sensor has an accuracy of 60.5°C.
Thus, it was reasonable to use the error bound value « = 0.5°C for
the compression algorithms. Väänänen and Hämäläinen (2020)

Figure 8 LoRa transmission (8 bytes) with uplink SF12 and downlink not received
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tested the LTC and RT-LRbTC algorithms for real temperature
data sets with a 10-min measurement interval. Temperature data
sets were obtained from the Finnish Meteorological Institute’s
open data service. The data sets usedwere 2018 and 2019 full-year
data from the Salla Naruska measurement station. The
temperature data were measured in degrees Celsius, with a

resolution of 0.1°. With « = 0.5°C, the compression algorithms
achieved compression ratios of CR = 9.5–10.2 with LTC and
CR=5.5–6.0withRT-LRbTC (N=3).
Table 4 lists the average power consumption for different

compression algorithms with different SF scenarios. The
measurement interval was 10min (Dt = 600 s). The values in

Figure 9 LoRa transmission (8 bytes) with uplink SF8 and downlink SF10

Table 3 LoRa Transmission energy consumption with different SFs and two different payloads. Results are in mWs

8 bytes (mWs) 12 bytes (mWs)

Uplink SF12, downlink SF12 248.89 257.82
Uplink SF12, downlink SF9 (downlink not received) 201.02 212.32
Uplink SF11, downlink SF12 163.93 162.73
Uplink SF11, downlink SF9 (downlink not received) 119.63 120.12
Uplink SF10, downlink SF12 104.41 107.60
Uplink SF10, downlink SF9 (downlink not received) 65.28 68.03
Uplink SF9, downlink SF11 59.55 58.60
Uplink SF9, downlink SF9 (downlink not received) 41.01 42.50
Uplink SF8, downlink SF10 32.54 33.26
Uplink SF8, downlink SF9 (downlink not received) 27.89 28.78
Uplink SF7, downlink SF9 18.11 19.09
Uplink SF7, downlink SF9 (downlink not received) 13.99 No data
Uplink SF7, downlink SF9 (downlink received in second window) 20.32 No data
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Table 4 were calculated using equation (4) from the
measured values from Tables 2 and 3 (8 bytes results for
LTC and no compression, 12 bytes results for RT-LRbTC
algorithms). The compression ratios were CR = 10 for LTC
and CR = 6 for both RT-LRbTC algorithms, which are
realistic values and were achieved by Väänänen and
Hämäläinen (2020).
There were no significant differences in the power

consumption values between the algorithms tested. The
differences were larger for high SF values when the effective
compression algorithm can achieve energy savings by reducing
the number of LoRa transmission periods. LoRa transmission

periods are significant energy consumers, particularly if the
used SF is high. With high SF values, the compression
algorithms used were very effective for reducing energy
consumption. This is clearly shown in Figure 10 (from
Table 4).
The battery used in this experiment was a 2,000 mAh

LiPo battery with 3.7 V nominal voltage. Its overall capacity
is 7.4Wh, which is 26,640 Ws. This capacity is the nominal
capacity in the optimal situation. For example, in cold
weather, the capacity of lithium-based batteries significantly
collapses (Li et al., 2017). Aging also affects the battery
capacity.

Table 4 Average power consumption with different algorithms implemented and with certain compression ratios. Results are in mW

No compression
(mW)

RT_LRbTC, N = 3
(mW)

RT_LRbTC, N = 4
(mW)

LTC
(mW)

Uplink SF12, downlink SF12 0.898 0.548 0.548 0.517
Uplink SF12, downlink SF9 (downlink not received) 0.818 0.535 0.535 0.509
Uplink SF11, downlink SF12 0.756 0.522 0.522 0.503
Uplink SF11, downlink SF9 (downlink not received) 0.682 0.510 0.510 0.496
Uplink SF10, downlink SF12 0.657 0.506 0.506 0.493
Uplink SF10, downlink SF9 (downlink not received) 0.592 0.495 0.495 0.487
Uplink SF9, downlink SF11 0.582 0.493 0.493 0.486
Uplink SF9, downlink SF9 (downlink not received) 0.551 0.488 0.488 0.483
Uplink SF8, downlink SF10 0.537 0.486 0.486 0.481
Uplink SF8, downlink SF9 (downlink not received) 0.530 0.484 0.484 0.481
Uplink SF7, downlink SF9 0.513 0.482 0.482 0.479
Uplink SF7, downlink SF9 (downlink not received) 0.506 – – 0.478
Uplink SF7, downlink SF9 (downlink received in second window) 0.517 – – 0.479

Figure 10 LoRa node power consumption with different SF values

Temporal sensor data compression

Olli Väänänen and Timo Hämäläinen

Sensor Review

Volume 42 · Number 5 · 2022 · 503–516

513



The battery lifetime was calculated using equation (3) in the
case where full capacity was available. The values used were
WTOT = 26,640 Ws and Pds = 4.6683·10�4 W. WM and WS

values were from the Tables 2 and 3. CR values of 10 for LTC
and 6 for RT-LRbTC. The battery lifetimes in days for
different algorithms and SF scenarios are listed in Table 5. RT-
LRbTC withN = 4 is not presented here because its results are
very close to RT-LRbTCwithN= 3.
As can be seen from Table 5, it is easy to achieve over an 18-

month lifetime if the RT-LRbTC algorithm is used (with a 0.5°
error bound). Without implementing a compression algorithm,
it is possible to have less than a 12-month lifetime if the device
is located at a long distance from the base station, or if there are
obstacles between the device and base station (thus using a high
SF value). In a good network coverage situation, the difference
is small between the compression algorithm used or without
compression algorithm implemented. Generally, the deep-
sleep current consumption of 107 mA is rather high for a
modern microcontroller-based LoRa node, and it determines
the overall lifetime.
In research by Väänänen and Hämäläinen (2021), the DR

was not fixed, and instead, the ADR was used. Thus, in that
case, the LoRa node was always transmitting with SF10, and in
approximately 50% of the transmitting periods, the downlink
was received (SF12). The average transmission energy
consumption was measured and calculated to be 91.47 mWs.
Using this value, the battery lifetime was calculated to be
approximately 490days if no compression algorithm was
implemented, 630days if the LTC algorithm was used and
616days if the RT-LRbTC algorithm was used. This case is
valid in that situation; however, in some other circumstances,
the LoRa node may use other SF values, and its effect on the
lifetime can be estimated by the results presented in Table 5.

7. Conclusions

From the results achieved in this study, the LoRa DR has a
significant effect on the overall power consumption of the LoRa
sensor node, especially if no compression algorithm is used.
However, normally it is not possible to control the DR because
the ADR adjusts the optimal SF value. If the base station is very
far away, then a high SF must be used to achieve that long
range, resulting in higher power consumption.

Simple temporal compression algorithms are very effective for
reducing the overall energy consumption of the LoRa sensor
node if the reconstruction error, determined by the error
bound, is acceptable. From the results achieved in this study,
the algorithm calculations did not have a significant effect on
energy consumption. Nevertheless, these algorithms can
significantly reduce the number of LoRa transmission periods
and thus achieve significant energy consumption savings. The
overall reduction in energy consumption was due to the
reduced number of radio transmission periods. The LTC
algorithm is very effective and simple algorithm, but its
unpredictable latency is not well suited for online applications
with latency requirements. RT-LRbTC is not as effective
compression algorithm, and it is a bit more complicated, but
with predictable latency, it is well suited for compressing
environmental data in the online mode. In this research, the
measurement interval was rather long, and thus, the LoRa node
deep-sleep consumption became a significant factor
determining the device lifetime.
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