Search results

1 – 10 of over 2000
Open Access
Article
Publication date: 8 May 2018

Stef Lommen, Gabriel Lodewijks and Dingena L. Schott

Bulk material-handling equipment development can be accelerated and is less expensive when testing of virtual prototypes can be adopted. However, often the complexity of the…

2051

Abstract

Purpose

Bulk material-handling equipment development can be accelerated and is less expensive when testing of virtual prototypes can be adopted. However, often the complexity of the interaction between particulate material and handling equipment cannot be handled by a single computational solver. This paper aims to establish a framework for the development, verification and application of a co-simulation of discrete element method (DEM) and multibody dynamics (MBD).

Design/methodology/approach

The two methods have been coupled in two directions, which consists of coupling the load data on the geometry from DEM to MBD and the position data from MBD to DEM. The coupling has been validated thoroughly in several scenarios, and the stability and robustness have been investigated.

Findings

All tests clearly demonstrated that the co-simulation is successful in predicting particle–equipment interaction. Examples are provided describing the effects of a coupling that is too tight, as well as a coupling that is too loose. A guideline has been developed for achieving stable and efficient co-simulations.

Originality/value

This framework shows how to achieve realistic co-simulations of particulate material and equipment interaction of a dynamic nature.

Details

Engineering Computations, vol. 35 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 25 April 2023

Rene Prieler, Simon Pletzer, Stefan Thusmer, Günther Schwabegger and Christoph Hochenauer

In fire resistance tests (FRTs) of building materials, a crucial criterion to pass the test procedure is to avoid the leakage of the hot flue gases caused by gaps and cracks…

Abstract

Purpose

In fire resistance tests (FRTs) of building materials, a crucial criterion to pass the test procedure is to avoid the leakage of the hot flue gases caused by gaps and cracks occurring due to the thermal exposure. The present study's aim is to calculate the deformation of a steel door, which is embedded within a wall made of bricks, and qualitatively determine the flue gas leakage.

Design/methodology/approach

A computational fluid dynamics/finite element method (CFD/FEM) coupling was introduced representing an intermediate approach between a one-way and a full two-way coupling methodology, leading to a simplified two-way coupling (STWC). In contrast to a full two way-coupling, the heat transfer through the steel door was simulated based on a one-way approach. Subsequently, the predicted temperatures at the door from the one-way simulation were used in the following CFD/FEM simulation, where the fluid flow inside and outside the furnace as well as the deformation of the door were calculated simultaneously.

Findings

The simulation showed large gaps and flue gas leakage above the door lock and at the upper edge of the door, which was in close accordance to the experiment. Furthermore, it was found that STWC predicted similar deformations compared to the one-way coupling.

Originality/value

Since two-way coupling approaches for fluid/structure interaction in fire research are computationally demanding, the number of studies is low. Only a few are dealing with the flue gas exit from rooms due to destruction of solid components. Thus, the present study is the first two-way approach dealing with flue gas leakage due to gap formation.

Details

Journal of Structural Fire Engineering, vol. 15 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Open Access
Article
Publication date: 30 August 2021

Björn Ekström

The purpose of this paper is to examine whether and how a methodological coupling of visualisations of trace data and interview methods can be utilised for information practices…

1354

Abstract

Purpose

The purpose of this paper is to examine whether and how a methodological coupling of visualisations of trace data and interview methods can be utilised for information practices studies.

Design/methodology/approach

Trace data visualisation enquiry is suggested as the coupling of visualising exported data from an information system and using these visualisations as basis for interview guides and elicitation in information practices research. The methodology is illustrated and applied through a small-scale empirical study of a citizen science project.

Findings

The study found that trace data visualisation enquiry enabled fine-grained investigations of temporal aspects of information practices and to compare and explore temporal and geographical aspects of practices. Moreover, the methodology made possible inquiries for understanding information practices through trace data that were discussed through elicitation with participants. The study also found that it can aid a researcher of gaining a simultaneous overarching and close picture of information practices, which can lead to theoretical and methodological implications for information practices research.

Originality/value

Trace data visualisation enquiry extends current methods for investigating information practices as it enables focus to be placed on the traces of practices as recorded through interactions with information systems and study participants' accounts of activities.

Open Access
Article
Publication date: 9 May 2022

Guolong Li, Mangmang Gao, Jingjing Yang, Yunlu Wang and Xueming Cao

This study aims to propose a vertical coupling dynamic analysis method of vehicle–track–substructure based on forced vibration and use this method to analyze the influence on the…

Abstract

Purpose

This study aims to propose a vertical coupling dynamic analysis method of vehicle–track–substructure based on forced vibration and use this method to analyze the influence on the dynamic response of track and vehicle caused by local fastener failure.

Design/methodology/approach

The track and substructure are decomposed into the rail subsystem and substructure subsystem, in which the rail subsystem is composed of two layers of nodes corresponding to the upper rail and the lower fastener. The rail is treated as a continuous beam with elastic discrete point supports, and spring-damping elements are used to simulate the constraints between rail and fastener. Forced displacement and forced velocity are used to deal with the effect of the substructure on the rail system, while the external load is used to deal with the reverse effect. The fastener failure is simulated with the methods that cancel the forced vibration transmission, namely take no account of the substructure–rail interaction at that position.

Findings

The dynamic characteristics of the infrastructure with local diseases can be accurately calculated by using the proposed method. Local fastener failure will slightly affect the vibration of substructure and carbody, but it will significantly intensify the vibration response between wheel and rail. The maximum vertical displacement and the maximum vertical vibration acceleration of rail is 2.94 times and 2.97 times the normal value, respectively, under the train speed of 350 km·h−1. At the same time, the maximum wheel–rail force and wheel load reduction rate increase by 22.0 and 50.2%, respectively, from the normal value.

Originality/value

This method can better reveal the local vibration conditions of the rail and easily simulate the influence of various defects on the dynamic response of the coupling system.

Details

Railway Sciences, vol. 1 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 13 April 2022

Shuanggao Li, Zhichao Huang, Qi Zeng and Xiang Huang

Aircraft assembly is the crucial part of aircraft manufacturing, and to meet the high-precision and high-efficiency requirements, cooperative measurement consisting of multiple…

Abstract

Purpose

Aircraft assembly is the crucial part of aircraft manufacturing, and to meet the high-precision and high-efficiency requirements, cooperative measurement consisting of multiple measurement instruments and automatic assisted devices is being adopted. To achieve the complete data of all assembly features, measurement devices need to be placed at different positions, and the flexible and efficient transfer relies on Automated Guided Vehicles (AGVs) and robots in the large-size space and close range. This paper aims to improve the automatic station transfer in accuracy and flexibility.

Design/methodology/approach

A transferring system with Light Detection and Ranging (LiDAR) and markers is established. The map coupling for navigation is optimized. Markers are distributed according to the accumulated uncertainties. The path planning method applied to the collaborative measurement is proposed for better accuracy. The motion planning method is optimized for better positioning accuracy.

Findings

A transferring system is constructed and the system is verified in the laboratory. Experimental results show that the proposed system effectively improves positioning accuracy and efficiency, which improves the station transfer for the cooperative measurement.

Originality/value

A Transferring system for collaborative measurement is proposed. The optimized navigation method extends the application of visual markers. With this system, AGV is capable of the cooperative measurement of large aircraft structural parts.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 3 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 31 July 2021

Taro Aso, Toshiyuki Amagasa and Hiroyuki Kitagawa

The purpose of this paper is to propose a scheme that allows users to interactively explore relations between entities in knowledge bases (KBs). KBs store a wide range of…

Abstract

Purpose

The purpose of this paper is to propose a scheme that allows users to interactively explore relations between entities in knowledge bases (KBs). KBs store a wide range of knowledge about real-world entities in a structured form as (subject, predicate, object). Although it is possible to query entities and relations among entities by specifying appropriate query expressions of SPARQL or keyword queries, the structure and the vocabulary are complicated, and it is hard for non-expert users to get the desired information. For this reason, many researchers have proposed faceted search interfaces for KBs. Nevertheless, existing ones are designed for finding entities and are insufficient for finding relations.

Design/methodology/approach

To this problem, the authors propose a novel “relation facet” to find relations between entities. To generate it, they applied clustering on predicates for grouping those predicates that are connected to common objects. Having generated clusters of predicates, the authors generated a facet according to the result. Specifically, they proposed to use a couple of clustering algorithms, namely, agglomerative hierarchical clustering (AHC) and CANDECOMP/PARAFAC (CP) tensor decomposition which is one of the tensor decomposition methods.

Findings

The authors experimentally show test the performance of clustering methods and found that AHC performs better than tensor decomposition. Besides, the authors conducted a user study and show that their proposed scheme performs better than existing ones in the task of searching relations.

Originality/value

The authors propose a relation-oriented faceted search method for KBs that allows users to explore relations between entities. As far as the authors know, this is the first method to focus on the exploration of relations between entities.

Details

International Journal of Web Information Systems, vol. 17 no. 6
Type: Research Article
ISSN: 1744-0084

Keywords

Open Access
Article
Publication date: 29 March 2024

Xingwen Wu, Zhenxian Zhang, Wubin Cai, Ningrui Yang, Xuesong Jin, Ping Wang, Zefeng Wen, Maoru Chi, Shuling Liang and Yunhua Huang

This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.

Abstract

Purpose

This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.

Design/methodology/approach

Vibration fatigue of railway bogie arising from the wheel/rail high frequency vibration has become the main concern of railway operators. Previous reviews usually focused on the formation mechanism of wheel/rail high frequency vibration. This paper thus gives a critical review of the vibration fatigue of railway bogie owing to the short-pitch irregularities-induced high frequency vibration, including a brief introduction of short-pitch irregularities, associated high frequency vibration in railway bogie, typical vibration fatigue failure cases of railway bogie and methodologies used for the assessment of vibration fatigue and research gaps.

Findings

The results showed that the resulting excitation frequencies of short-pitch irregularity vary substantially due to different track types and formation mechanisms. The axle box-mounted components are much more vulnerable to vibration fatigue compared with other components. The wheel polygonal wear and rail corrugation-induced high frequency vibration is the main driving force of fatigue failure, and the fatigue crack usually initiates from the defect of the weld seam. Vibration spectrum for attachments of railway bogie defined in the standard underestimates the vibration level arising from the short-pitch irregularities. The current investigations on vibration fatigue mainly focus on the methods to improve the accuracy of fatigue damage assessment, and a systematical design method for vibration fatigue remains a huge gap to improve the survival probability when the rail vehicle is subjected to vibration fatigue.

Originality/value

The research can facilitate the development of a new methodology to improve the fatigue life of railway vehicles when subjected to wheel/rail high frequency vibration.

Details

Railway Sciences, vol. 3 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 13 April 2021

Łukasz Kryszak, Katarzyna Świerczyńska and Jakub Staniszewski

Total factor productivity (TFP) has become a prominent concept in agriculture economics and policy over the last three decades. The main aim of this paper is to obtain a detailed…

4710

Abstract

Purpose

Total factor productivity (TFP) has become a prominent concept in agriculture economics and policy over the last three decades. The main aim of this paper is to obtain a detailed picture of the field via bibliometric analysis to identify research streams and future research agenda.

Design/methodology/approach

The data sample consists of 472 papers in several bibliometric exercises. Citation and collaboration structure analyses are employed to identify most important authors and journals and track the interconnections between main authors and institutions. Next, content analysis based on bibliographic coupling is conducted to identify main research streams in TFP.

Findings

Three research streams in agricultural TFP research were distinguished: TFP growth in developing countries in the context of policy reforms (1), TFP in the context of new challenges in agriculture (2) and finally, non-parametric TFP decomposition based on secondary data (3).

Originality/value

This research indicates agenda of future TFP research, in particular broadening the concept of TFP to the problems of policy, environment and technology in emerging countries. It provides description of the current state of the art in the agricultural TFP literature and can serve as a “guide” to the field.

Details

International Journal of Emerging Markets, vol. 18 no. 1
Type: Research Article
ISSN: 1746-8809

Keywords

Open Access
Article
Publication date: 30 July 2019

Zhizhou Wu, Yiming Zhang, Guishan Tan and Jia Hu

Traffic density is one of the most important parameters to consider in the traffic operation field. Owing to limited data sources, traditional methods cannot extract traffic…

1416

Abstract

Purpose

Traffic density is one of the most important parameters to consider in the traffic operation field. Owing to limited data sources, traditional methods cannot extract traffic density directly. In the vehicular ad hoc network (VANET) environment, the vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) interaction technologies create better conditions for collecting the whole time-space and refined traffic data, which provides a new approach to solving this problem.

Design/methodology/approach

On that basis, a real-time traffic density extraction method has been proposed, including lane density, segment density and network density. Meanwhile, using SUMO and OMNet++ as traffic simulator and network simulator, respectively, the Veins framework as middleware and the two-way coupling VANET simulation platform was constructed.

Findings

Based on the simulation platform, a simulated intersection in Shanghai was developed to investigate the adaptability of the model.

Originality/value

Most research studies use separate simulation methods, importing trace data obtained by using from the simulation software to the communication simulation software. In this paper, the tight coupling simulation method is applied. Using real-time data and history data, the research focuses on the establishment and validation of the traffic density extraction model.

Details

Journal of Intelligent and Connected Vehicles, vol. 2 no. 1
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 7 April 2021

Leyi Cheng, Yinghan Wang and Yichuan Peng

The causes of high-speed railway failures are complex, and it is difficult to quantitatively and accurately describe safety evaluation. The purpose of this paper is to construct a…

1708

Abstract

Purpose

The causes of high-speed railway failures are complex, and it is difficult to quantitatively and accurately describe safety evaluation. The purpose of this paper is to construct a model to ensure the safety of high-speed railway operations.

Design/methodology/approach

The authors construct a high-speed railway operation safety evaluation index system from four aspects: personnel, equipment, environment and management and analyze the inter-coupling relationship of various safety factors. Based on the evaluation index system, the use of network analytic hierarchy process (ANP) and fuzzy comprehensive evaluation will be used to establish a high-speed railway operation safety evaluation model.

Findings

Through the literature investigation and field investigation, combined with high-speed railway safety key points and system composition, 4 first-level indicators and 17 second-level indicators were selected to construct a high-speed railway operation safety evaluation index system. It can be seen from the results that the personnel management system and the signal and control system have the largest weight.

Originality/value

On the basis of establishing an evaluation index system, comprehensively considering the internal coupling relationship between evaluation indexes and the fuzziness of high-speed railway operation safety evaluation, high-speed railway uses ANP fuzzy network analysis method to construct high-speed railway operation, and the safety evaluation model has certain advantages and practicability in the case of the relative lack of high-speed railway operation data and fault data.

Details

Smart and Resilient Transportation, vol. 3 no. 1
Type: Research Article
ISSN: 2632-0487

Keywords

1 – 10 of over 2000