Search results

1 – 10 of 69
Open Access
Article
Publication date: 8 May 2018

Aidan Jungo, Mengmeng Zhang, Jan B. Vos and Arthur Rizzi

The purpose of this paper is to present the status of the on-going development of the new computerized environment for aircraft synthesis and integrated optimization methods…

2317

Abstract

Purpose

The purpose of this paper is to present the status of the on-going development of the new computerized environment for aircraft synthesis and integrated optimization methods (CEASIOM) and to compare results of different aerodynamic tools. The concurrent design of aircraft is an extremely interdisciplinary activity incorporating simultaneous consideration of complex, tightly coupled systems, functions and requirements. The design task is to achieve an optimal integration of all components into an efficient, robust and reliable aircraft with high performance that can be manufactured with low technical and financial risks, and has an affordable life-cycle cost.

Design/methodology/approach

CEASIOM (www.ceasiom.com) is a framework that integrates discipline-specific tools like computer-aided design, mesh generation, computational fluid dynamics (CFD), stability and control analysis and structural analysis, all for the purpose of aircraft conceptual design.

Findings

A new CEASIOM version is under development within EU Project AGILE (www.agile-project.eu), by adopting the CPACS XML data-format for representation of all design data pertaining to the aircraft under development.

Research limitations/implications

Results obtained from different methods have been compared and analyzed. Some differences have been observed; however, they are mainly due to the different physical modelizations that are used by each of these methods.

Originality/value

This paper summarizes the current status of the development of the new CEASIOM software, in particular for the following modules: CPACS file visualizer and editor CPACSupdater (Matlab) Automatic unstructured (Euler) & hybrid (RANS) mesh generation by sumo Multi-fidelity CFD solvers: Digital Datcom (Empirical), Tornado (VLM), Edge-Euler & SU2-Euler, Edge-RANS & SU2-RANS Data fusion tool: aerodynamic coefficients fusion from variable fidelity CFD tools above to compile complete aero-table for flight analysis and simulation.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 8 November 2023

Armando Di Meglio, Nicola Massarotti, Samuel Rolland and Perumal Nithiarasu

This study aims to analyse the non-linear losses of a porous media (stack) composed by parallel plates and inserted in a resonator tube in oscillatory flows by proposing numerical…

Abstract

Purpose

This study aims to analyse the non-linear losses of a porous media (stack) composed by parallel plates and inserted in a resonator tube in oscillatory flows by proposing numerical correlations between pressure gradient and velocity.

Design/methodology/approach

The numerical correlations origin from computational fluid dynamics simulations, conducted at the microscopic scale, in which three fluid channels representing the porous media are taken into account. More specifically, for a specific frequency and stack porosity, the oscillating pressure input is varied, and the velocity and the pressure-drop are post-processed in the frequency domain (Fast Fourier Transform analysis).

Findings

It emerges that the viscous component of pressure drop follows a quadratic trend with respect to velocity inside the stack, while the inertial component is linear also at high-velocity regimes. Furthermore, the non-linear coefficient b of the correlation ax + bx2 (related to the Forchheimer coefficient) is discovered to be dependent on frequency. The largest value of the b is found at low frequencies as the fluid particle displacement is comparable to the stack length. Furthermore, the lower the porosity the higher the Forchheimer term because the velocity gradients at the stack geometrical discontinuities are more pronounced.

Originality/value

The main novelty of this work is that, for the first time, non-linear losses of a parallel plate stack are investigated from a macroscopic point of view and summarised into a non-linear correlation, similar to the steady-state and well-known Darcy–Forchheimer law. The main difference is that it considers the frequency dependence of both Darcy and Forchheimer terms. The results can be used to enhance the analysis and design of thermoacoustic devices, which use the kind of stacks studied in the present work.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 5 August 2024

Salman Al-Zahrani

The purpose of this study is to compare the thermal performance of two flow configurations in corrugated plate heat exchanger (CPHE): vertical flow configuration (CPHEvert.) and…

Abstract

Purpose

The purpose of this study is to compare the thermal performance of two flow configurations in corrugated plate heat exchanger (CPHE): vertical flow configuration (CPHEvert.) and diagonal flow configuration (CPHEdiag.). The study aims to determine the differences between these configurations and evaluate their respective thermal performance based on metrics such as heat transfer rates, pressure drop values and flow distribution.

Design/methodology/approach

The study compares the thermal performance of two flow arrangements of CPHE using identical geometrical dimensions and test conditions. Computational fluid dynamics (CFD) is employed, and a validated numerical model is used for the investigation. The comparison is based on analyzing the rate of heat transfer and pressure drop data between the two flow arrangements.

Findings

The findings indicate that the diagonal flow configuration in CPHEs offers improved flow distribution, enhanced heat transfer performance and lower pressure drop compared to the vertical flow configuration. However, the differences in general in the thermal performance of CPHEvert. and CPHEdiag. are found to be minimal.

Originality/value

To the best of the author’s knowledge, this study represents the first attempt to investigate the impact of vertical and diagonal flow configurations on the thermal performance of the CPHE.

Details

Frontiers in Engineering and Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-2499

Keywords

Open Access
Article
Publication date: 8 January 2020

Guillermo A. Riveros, Felipe J. Acosta, Reena R. Patel and Wayne Hodo

The rostrum of a paddlefish provides hydrodynamic stability during feeding process in addition to detect the food using receptors that are randomly distributed in the rostrum. The…

1141

Abstract

Purpose

The rostrum of a paddlefish provides hydrodynamic stability during feeding process in addition to detect the food using receptors that are randomly distributed in the rostrum. The exterior tissue of the rostrum covers the cartilage that surrounds the bones forming interlocking star shaped bones.

Design/methodology/approach

The aim of this work is to assess the mechanical behavior of four finite element models varying the type of formulation as follows: linear-reduced integration, linear-full integration, quadratic-reduced integration and quadratic-full integration. The paper also presents the load transfer mechanisms of the bone structure of the rostrum. The base material used in the study was steel with elastic–plastic behavior as a homogeneous material before applying materials properties that represents the behavior of bones, cartilages and tissues.

Findings

Conclusions are based on comparison among the four models. There is no significant difference between integration orders for similar type of elements. Quadratic-reduced integration formulation resulted in lower structural stiffness compared with linear formulation as seen by higher displacements and stresses than using linearly formulated elements. It is concluded that second-order elements with reduced integration are the alternative to analyze biological structures as they can better adapt to the complex natural contours and can model accurately stress concentrations and distributions without over stiffening their general response.

Originality/value

The use of advanced computational mechanics techniques to analyze the complex geometry and components of the paddlefish rostrum provides a viable avenue to gain fundamental understanding of the proper finite element formulation needed to successfully obtain the system behavior and hot spot locations.

Details

Engineering Computations, vol. 37 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 21 January 2022

Yong Li, Yingchun Zhang, Gongnan Xie and Bengt Ake Sunden

This paper aims to comprehensively clarify the research status of thermal transport of supercritical aviation kerosene, with particular interests in the effect of cracking on heat…

1480

Abstract

Purpose

This paper aims to comprehensively clarify the research status of thermal transport of supercritical aviation kerosene, with particular interests in the effect of cracking on heat transfer.

Design/methodology/approach

A brief review of current research on supercritical aviation kerosene is presented in views of the surrogate model of hydrocarbon fuels, chemical cracking mechanism of hydrocarbon fuels, thermo-physical properties of hydrocarbon fuels, turbulence models, flow characteristics and thermal performances, which indicates that more efforts need to be directed into these topics. Therefore, supercritical thermal transport of n-decane is then computationally investigated in the condition of thermal pyrolysis, while the ASPEN HYSYS gives the properties of n-decane and pyrolysis products. In addition, the one-step chemical cracking mechanism and SST k-ω turbulence model are applied with relatively high precision.

Findings

The existing surrogate models of aviation kerosene are limited to a specific scope of application and their thermo-physical properties deviate from the experimental data. The turbulence models used to implement numerical simulation should be studied to further improve the prediction accuracy. The thermal-induced acceleration is driven by the drastic density change, which is caused by the production of small molecules. The wall temperature of the combustion chamber can be effectively reduced by this behavior, i.e. the phenomenon of heat transfer deterioration can be attenuated or suppressed by thermal pyrolysis.

Originality/value

The issues in numerical studies of supercritical aviation kerosene are clearly revealed, and the conjugation mechanism between thermal pyrolysis and convective heat transfer is initially presented.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 4 January 2021

Radosław Wajman

Crystallization is the process widely used for components separation and solids purification. The systems for crystallization process evaluation applied so far, involve numerous…

2686

Abstract

Purpose

Crystallization is the process widely used for components separation and solids purification. The systems for crystallization process evaluation applied so far, involve numerous non-invasive tomographic measurement techniques which suffers from some reported problems. The purpose of this paper is to show the abilities of three-dimensional Electrical Capacitance Tomography (3D ECT) in the context of non-invasive and non-intrusive visualization of crystallization processes. Multiple aspects and problems of ECT imaging, as well as the computer model design to work with the high relative permittivity liquids, have been pointed out.

Design/methodology/approach

To design the most efficient (from a mechanical and electrical point of view) 3D ECT sensor structure, the high-precise impedance meter was applied. The three types of sensor were designed, built, and tested. To meet the new concept requirements, the dedicated ECT device has been constructed.

Findings

It has been shown that the ECT technique can be applied to the diagnosis of crystallization. The crystals distribution can be identified using this technique. The achieved measurement resolution allows detecting the localization of crystals. The usage of stabilized electrodes improves the sensitivity of the sensor and provides the images better suitable for further analysis.

Originality/value

The dedicated 3D ECT sensor construction has been proposed to increase its sensitivity in the border area, where the crystals grow. Regarding this feature, some new algorithms for the potential field distribution and the sensitivity matrix calculation have been developed. The adaptation of the iterative 3D image reconstruction process has also been described.

Details

Sensor Review, vol. 41 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Open Access
Article
Publication date: 18 January 2022

Srinimalan Balakrishnan Selvakumaran and Daniel Mark Hall

The purpose of this paper is to investigate the feasibility of an end-to-end simplified and automated reconstruction pipeline for digital building assets using the design science…

1679

Abstract

Purpose

The purpose of this paper is to investigate the feasibility of an end-to-end simplified and automated reconstruction pipeline for digital building assets using the design science research approach. Current methods to create digital assets by capturing the state of existing buildings can provide high accuracy but are time-consuming, expensive and difficult.

Design/methodology/approach

Using design science research, this research identifies the need for a crowdsourced and cloud-based approach to reconstruct digital building assets. The research then develops and tests a fully functional smartphone application prototype. The proposed end-to-end smartphone workflow begins with data capture and ends with user applications.

Findings

The resulting implementation can achieve a realistic three-dimensional (3D) model characterized by different typologies, minimal trade-off in accuracy and low processing costs. By crowdsourcing the images, the proposed approach can reduce costs for asset reconstruction by an estimated 93% compared to manual modeling and 80% compared to locally processed reconstruction algorithms.

Practical implications

The resulting implementation achieves “good enough” reconstruction of as-is 3D models with minimal tradeoffs in accuracy compared to automated approaches and 15× cost savings compared to a manual approach. Potential facility management use cases include the issue and information tracking, 3D mark-up and multi-model configurators.

Originality/value

Through user engagement, development, testing and validation, this work demonstrates the feasibility and impact of a novel crowdsourced and cloud-based approach for the reconstruction of digital building assets.

Details

Journal of Facilities Management , vol. 20 no. 3
Type: Research Article
ISSN: 1472-5967

Keywords

Content available
500

Abstract

Details

Engineering Computations: International Journal for Computer-Aided Engineering and Software, vol. 32 no. 1
Type: Research Article
ISSN: 0264-4401

Open Access
Article
Publication date: 30 October 2020

Jiao-Long Zhang, Xian Liu, Yong Yuan, Herbert A. Mang and Bernhard L.A. Pichler

Transfer relations represent analytical solutions of the linear theory of circular arches, relating each one of the kinematic and static variables at an arbitrary cross-section to…

1050

Abstract

Purpose

Transfer relations represent analytical solutions of the linear theory of circular arches, relating each one of the kinematic and static variables at an arbitrary cross-section to the kinematic and static variables at the initial cross-section. The purpose of this paper is to demonstrate the significance of the transfer relations for structural analysis by means of three examples taken from civil engineering.

Design/methodology/approach

The first example refers to an arch bridge, the second one to the vault of a metro station and the third one to a real-scale test of a segmental tunnel ring.

Findings

The main conclusions drawn from these three examples are as follows: increasing the number of hangers/columns of the investigated arch bridge entails a reduction of the maximum bending moment of the arch, allowing it to approach, as much as possible, the desired thrust-line behavior; compared to the conventional in situ cast method, a combined precast and in situ cast method results in a decrease of the maximum bending moment of an element of the vault of the studied underground station by 46%; and the local behavior of the joints governs both the structural convergences and the bearing capacity of the tested segmental tunnel ring.

Originality/value

The three examples underline that the transfer relations significantly facilitate computer-aided engineering of circular arch structures, including arch bridges, vaults of metro stations and segmental tunnel rings.

Details

Engineering Computations, vol. 38 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 26 August 2024

Sarath Radhakrishnan, Joan Calafell, Arnau Miró, Bernat Font and Oriol Lehmkuhl

Wall-modeled large eddy simulation (LES) is a practical tool for solving wall-bounded flows with less computational cost by avoiding the explicit resolution of the near-wall…

Abstract

Purpose

Wall-modeled large eddy simulation (LES) is a practical tool for solving wall-bounded flows with less computational cost by avoiding the explicit resolution of the near-wall region. However, its use is limited in flows that have high non-equilibrium effects like separation or transition. This study aims to present a novel methodology of using high-fidelity data and machine learning (ML) techniques to capture these non-equilibrium effects.

Design/methodology/approach

A precursor to this methodology has already been tested in Radhakrishnan et al. (2021) for equilibrium flows using LES of channel flow data. In the current methodology, the high-fidelity data chosen for training includes direct numerical simulation of a double diffuser that has strong non-equilibrium flow regions, and LES of a channel flow. The ultimate purpose of the model is to distinguish between equilibrium and non-equilibrium regions, and to provide the appropriate wall shear stress. The ML system used for this study is gradient-boosted regression trees.

Findings

The authors show that the model can be trained to make accurate predictions for both equilibrium and non-equilibrium boundary layers. In example, the authors find that the model is very effective for corner flows and flows that involve relaminarization, while performing rather ineffectively at recirculation regions.

Originality/value

Data from relaminarization regions help the model to better understand such phenomenon and to provide an appropriate boundary condition based on that. This motivates the authors to continue the research in this direction by adding more non-equilibrium phenomena to the training data to capture recirculation as well.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 69