Search results

1 – 10 of 34
Article
Publication date: 10 July 2024

Xuan Hoang Khoa Le, Hakan F. Öztop and Mikhail A. Sheremet

The performance of solid fins inside a differentially heated cubical cavity is numerically studied in this paper. The main purpose of the study is to make an optimization to reach…

Abstract

Purpose

The performance of solid fins inside a differentially heated cubical cavity is numerically studied in this paper. The main purpose of the study is to make an optimization to reach the maximum heat transfer in the enclosure having the solid fins with studied parameters.

Design/methodology/approach

The considered domain of interest is a differentially heated cube having heat-conducting solid fins placed on the heated wall while an opposite wall is a cooled one. Other walls are adiabatic. Governing equations describing natural convection in the fluid filled cube and heat conduction in solid fins have been written using non-dimensional variables such velocity and vorticity taking into account the Boussinesq approximation for the buoyancy force and ideal solid/fluid interfaces between solid fins and fluid. The formulated equations with appropriate initial and boundary conditions have been solved by the finite difference method of the second of accuracy. The developed in-house computational code has been validated using the mesh sensitivity analysis and numerical data of other authors. Analysis has been performed in a wide range of key parameters such as Rayleigh number (Ra = 104–106), non-dimensional fins length (l = 0.2–0.8), non-dimensional location of fins (d = 0.2–0.6) and number of fins (n = 1–3).

Findings

From numerical methods point of view the used non-primitive variables allows to perform numerical simulation of convective heat transfer in three-dimensional (3D) regions with two advantages, namely, excluding difficulties that can be found using vector potential functions and reducing the computational time compared to primitive variables and SIMPLE-like algorithms. From a physical point of view, it has been shown that using solid fins can intensify the heat transfer performance compared to cavities without any fins. Fins located close to the bottom wall of the cavity have a better heat transfer rate than those placed close to the upper cavity surface. At high Rayleigh numbers, increasing the fins length beyond 0.6 leads to a reduction of the average Nusselt number, and one solid fin can be used to intensify the heat transfer.

Originality/value

The present numerical study is based on hybrid approach for numerical analysis of convective heat transfer using velocity and vorticity that has some mentioned advantages. Obtained results allow intensifying the heat transfer using solid fins in 3D chambers with appropriate location and length.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 November 2023

Dravesh Yadav, Ravi Sastri Ayyagari and Gaurav Srivastava

This paper numerically investigates the effect of cavity radiation on the thermal response of hollow aluminium tubes and facade systems subjected to fire.

Abstract

Purpose

This paper numerically investigates the effect of cavity radiation on the thermal response of hollow aluminium tubes and facade systems subjected to fire.

Design/methodology/approach

Finite element simulations were performed using ABAQUS 6.14. The accuracy of the numerical model was established through experimental and numerical results available in the literature. The proposed numerical model was utilised to study the effect of cavity radiation on the thermal response of aluminium hollow tubes and facade system. Different scenarios were considered to assess the applicability of the commonly used lumped capacitance heat transfer model.

Findings

The effects of cavity radiation were found to be significant for non-uniform fire exposure conditions. The maximum temperature of a hollow aluminium tube with 1-sided fire exposure was found to be 86% greater when cavity radiation was considered. Further, the time to attain critical temperature under non-uniform fire exposure, as calculated from the conventional lumped heat capacity heat transfer model, was non-conservative when compared to that predicted by the proposed simulation approach considering cavity radiation. A metal temperature of 550 °C was attained about 18 min earlier than what was calculated by the lumped heat capacitance model.

Research limitations/implications

The present study will serve as a basis for the study of the effects of cavity radiation on the thermo-mechanical response of aluminium hollow tubes and facade systems. Such thermo-mechanical analyses will enable the study of the effects of cavity radiation on the failure mechanisms of facade systems.

Practical implications

Cavity radiation was found to significantly affect the thermal response of hollow aluminium tubes and façade systems. In design processes, it is essential to consider the potential consequences of non-uniform heating situations, as they can have a significant impact on the temperature of structures. It was also shown that the use of lumped heat capacity heat transfer model in cases of non-uniform fire exposure is unsuitable for the thermal analysis of such systems.

Originality/value

This is the first detailed investigation of the effects of cavity radiation on the thermal response of aluminium tubes and façade systems for different fire exposure conditions.

Details

Journal of Structural Fire Engineering, vol. 15 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 13 September 2024

Pranay Vaggu and S.K. Panigrahi

The effect of spinning has been studied and analysed for different projectile shapes such as ogive, blunt, cylindrical and conical by using numerical simulations.

Abstract

Purpose

The effect of spinning has been studied and analysed for different projectile shapes such as ogive, blunt, cylindrical and conical by using numerical simulations.

Design/methodology/approach

Projectile shape is one of the important parameters in the penetration mechanism. The present study deals with the failure mechanisms and ballistic evaluation for different nose-shaped projectiles undergoing normal impact with spinning. Materials characterization has been made by Johnson–Cook strength and failure models, and LS-DYNA simulations are used to analyse the impact of steel projectiles on an Al 7075-T651 target at different impact velocities under normal impact conditions. The experimental results from the literature are used to validate the model. Based on the residual velocity values, the Recht-Ipson model has been curve-fitted and approximate ballistic limit velocity has been evaluated. The approximated ballistic limit velocity is found to be 3.4% higher than the experimental results and compared well with the experimental results. Subsequently, the validated model conditions are used to study and analyse the effect of spinning for different nose-shaped projectiles undergoing normal impact conditions.

Findings

The ductile hole failure is observed for the ogive nose projectile, petals are formed and fragmented for the conical projectile, and plugging is observed for cylindrical projectiles. A Recht-Ipson curve is presented for each spinning condition for each projectile shape and the ballistic limit has been evaluated for each condition.

Originality/value

The proposed research outputs are original and innovative and, have a lot of importance in defence applications, particularly in arms and ammunition.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 23 March 2023

Ghassan Almasabha, Ali Shehadeh, Odey Alshboul and Omar Al Hattamleh

Buried pipelines under various soil embankment heights are cost-effective alternatives to transporting liquid products. This paper aims to assist pipeline architects and…

Abstract

Purpose

Buried pipelines under various soil embankment heights are cost-effective alternatives to transporting liquid products. This paper aims to assist pipeline architects and professionals in selecting the most cost-effective buried reinforced concrete pipelines under deep embankment soil with minor structural reinforcement while meeting shear stress requirements, safety and reliability constraints.

Design/methodology/approach

It is unfeasible to experimentally assess pipeline efficiency with high soil fill depth. Thus, to fill this gap, this research uses a dependable finite element analysis (FEA) to conduct a parametric study and carry out such an issue. This research considered reinforced concrete pipes with diameters of 25, 50, 75, 100, 125 and 150 cm at depths of 5, 10, 15 and 20 m.

Findings

According to this research, the proposed best pipeline diameter-to-thickness (D/T) proportions for soil embankment heights 5, 10, 15 and 20 m are 8.75, 4.8, 3.5 and 3.1, correspondingly. The cost-effective reinforced concrete (RC) pipeline thickness dramatically rises if the soil embankment reaches 20 m, indicating that the soil embankment depth highly influences it. Most of the analyzed reinforced concrete pipelines had a maximum deflection value of less than 1 cm, telling that the FEA accurately identified the pipeline width, needed flexural steel reinforcement, and concrete crack width while avoiding significant distortion.

Originality/value

The cost-effective thickness for the analyzed structured concrete pipes was calculated by considering the lowest required value of steel reinforcement. An algorithm was developed based on the parametric scientific findings to predict the ideal pipeline D/T ratio. A construction case study was also shown to assist architects and professionals in determining the best reinforced concrete pipeline geometry for a specific soil embankment height.

Details

Construction Innovation , vol. 24 no. 5
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 17 September 2024

Sinan Obaidat, Mohammad Firas Tamimi, Ahmad Mumani and Basem Alkhaleel

This paper aims to present a predictive model approach to estimate the tensile behavior of polylactic acid (PLA) under uncertainty using the fused deposition modeling (FDM) and…

Abstract

Purpose

This paper aims to present a predictive model approach to estimate the tensile behavior of polylactic acid (PLA) under uncertainty using the fused deposition modeling (FDM) and American Society for Testing and Materials (ASTM) D638’s Types I and II test standards.

Design/methodology/approach

The prediction approach combines artificial neural network (ANN) and finite element analysis (FEA), Monte Carlo simulation (MCS) and experimental testing for estimating tensile behavior for FDM considering uncertainties of input parameters. FEA with variance-based sensitivity analysis is used to quantify the impacts of uncertain variables, resulting in determining the significant variables for use in the ANN model. ANN surrogates FEA models of ASTM D638’s Types I and II standards to assess their prediction capabilities using MCS. The developed model is applied for testing the tensile behavior of PLA given probabilistic variables of geometry and material properties.

Findings

The results demonstrate that Type I is more appropriate than Type II for predicting tensile behavior under uncertainty. With a training accuracy of 98% and proven presence of overfitting, the tensile behavior can be successfully modeled using predictive methods that consider the probabilistic nature of input parameters. The proposed approach is generic and can be used for other testing standards, input parameters, materials and response variables.

Originality/value

Using the proposed predictive approach, to the best of the authors’ knowledge, the tensile behavior of PLA is predicted for the first time considering uncertainties of input parameters. Also, incorporating global sensitivity analysis for determining the most contributing parameters influencing the tensile behavior has not yet been studied for FDM. The use of only significant variables for FEA, ANN and MCS minimizes the computational effort, allowing to simulate more runs with reduced number of variables within acceptable time.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 December 2023

T.M. Jeyashree and P.R. Kannan Rajkumar

This study focused on identifying critical factors governing the fire response of prestressed hollow-core slabs. The hollow-core slabs used as flooring units can be subjected to…

Abstract

Purpose

This study focused on identifying critical factors governing the fire response of prestressed hollow-core slabs. The hollow-core slabs used as flooring units can be subjected to elevated temperatures during a fire. The fire response of prestressed hollow-core slabs is required to develop slabs with greater fire endurance. The present study aims to determine the extent to which the hollow-core slab can sustain load during a fire without undergoing progressive collapse under extreme fire and heating scenarios.

Design/methodology/approach

A finite element model was generated to predict the fire response of prestressed hollow core slabs under elevated temperatures. The accuracy of the model was predicted by examining thermal and structural responses through coupled temperature displacement analysis. A sensitivity analysis was performed to study the effects of concrete properties on prediction of system response. A parametric study was conducted by varying the thickness of the slab, fire and heating scenarios.

Findings

Thermal conductivity and specific heat of concrete were determined as sensitive parameters. The thickness of the slab was identified as a critical factor at a higher load level. Asymmetric heating of the slab resulted in higher fire resistance compared with symmetric heating.

Originality/value

This is the first study focused on studying the effect of modeling uncertainties on the system response by sensitivity analysis under elevated temperatures. The developed model with a parametric study helps in identifying critical factors for design purposes.

Details

Journal of Structural Fire Engineering, vol. 15 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 25 July 2024

Francisco Sánchez-Moreno, David MacManus, Fernando Tejero and Christopher Sheaf

Aerodynamic shape optimisation is a complex problem usually governed by transonic non-linear aerodynamics, a high dimensional design space and high computational cost…

Abstract

Purpose

Aerodynamic shape optimisation is a complex problem usually governed by transonic non-linear aerodynamics, a high dimensional design space and high computational cost. Consequently, the use of a numerical simulation approach can become prohibitive for some applications. This paper aims to propose a computationally efficient multi-fidelity method for the optimisation of two-dimensional axisymmetric aero-engine nacelles.

Design/methodology/approach

The nacelle optimisation approach combines a gradient-free algorithm with a multi-fidelity surrogate model. Machine learning based on artificial neural networks (ANN) is used as the modelling technique because of its ability to handle non-linear behaviour. The multi-fidelity method combines Reynolds-averaged Navier Stokes and Euler CFD calculations as high- and low-fidelity, respectively.

Findings

Ratios of low- and high-fidelity training samples to degrees of freedom of nLF/nDOFs = 50 and nHF/nDOFs = 12.5 provided a surrogate model with a root mean squared error less than 5% and a similar convergence to the optimal design space when compared with the equivalent CFD-in-the-loop optimisation. Similar nacelle geometries and aerodynamic flow topologies were obtained for down-selected designs with a reduction of 92% in the computational cost. This highlights the potential benefits of this multi-fidelity approach for aerodynamic optimisation within a preliminary design stage.

Originality/value

The application of a multi-fidelity technique based on ANN to the aerodynamic shape optimisation problem of isolated nacelles is the key novelty of this work. The multi-fidelity aspect of the method advances current practices based on single-fidelity surrogate models and offers further reductions in computational cost to meet industrial design timescales. Additionally, guidelines in terms of low- and high-fidelity sample sizes relative to the number of design variables have been established.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 10 April 2024

Zhongyi Wang, Xueyao Qiao, Jing Chen, Lina Li, Haoxuan Zhang, Junhua Ding and Haihua Chen

This study aims to establish a reliable index to identify interdisciplinary breakthrough innovation effectively. We constructed a new index, the DDiv index, for this purpose.

Abstract

Purpose

This study aims to establish a reliable index to identify interdisciplinary breakthrough innovation effectively. We constructed a new index, the DDiv index, for this purpose.

Design/methodology/approach

The DDiv index incorporates the degree of interdisciplinarity in the breakthrough index. To validate the index, a data set combining the publication records and citations of Nobel Prize laureates was divided into experimental and control groups. The validation methods included sensitivity analysis, correlation analysis and effectiveness analysis.

Findings

The sensitivity analysis demonstrated the DDiv index’s ability to differentiate interdisciplinary breakthrough papers from various categories of papers. This index not only retains the strengths of the existing index in identifying breakthrough innovation but also captures interdisciplinary characteristics. The correlation analysis revealed a significant correlation (correlation coefficient = 0.555) between the interdisciplinary attributes of scientific research and the occurrence of breakthrough innovation. The effectiveness analysis showed that the DDiv index reached the highest prediction accuracy of 0.8. Furthermore, the DDiv index outperforms the traditional DI index in terms of accuracy when it comes to identifying interdisciplinary breakthrough innovation.

Originality/value

This study proposed a practical and effective index that combines interdisciplinary and disruptive dimensions for detecting interdisciplinary breakthrough innovation. The identification and measurement of interdisciplinary breakthrough innovation play a crucial role in facilitating the integration of multidisciplinary knowledge, thereby accelerating the scientific breakthrough process.

Details

The Electronic Library , vol. 42 no. 4
Type: Research Article
ISSN: 0264-0473

Keywords

Article
Publication date: 16 July 2024

Nahid Hasan and Sumon Saha

This study aims to investigate magnetohydrodynamic (MHD) conjugate pure mixed convection considering interior heat production and resistive heating inside a square closed/open…

Abstract

Purpose

This study aims to investigate magnetohydrodynamic (MHD) conjugate pure mixed convection considering interior heat production and resistive heating inside a square closed/open cavity featuring a rotating cylinder for aiding (clockwise) and opposing (counterclockwise) flow configurations. Moreover, the impacts of altering cylinder size and conductivity on the system’s overall performance to determine optimum conditions are examined in this investigation.

Design/methodology/approach

The closed chamber is differentially heated by keeping high and low temperatures at the vertical boundaries. In contrast, the open cavity has a heated left wall and an open right boundary. The Galerkin finite element method is used to solve the Navier–Stokes and the thermal energy equations, which construct the present study’s mathematical framework. Numerical simulations are conducted for the specified ranges of several controlling parameters: Reynolds (31.62 ≤ Re ≤ 1000), Grashof (103Gr ≤ 106) and Hartmann numbers (0 ≤ Ha ≤ 31.62), and volumetric heat generation coefficient (Δ = 0, 3).

Findings

When Gr, Re and Ha simultaneously increase, the average Nusselt number along the warmed boundary rises accordingly. Conversely, interior heat production lowers heat transmission within the computational domain, which is also monitored regarding mean fluid temperature, overall entropy production and thermal performance criterion. Finally, the open cavity confirms better thermal performance than the closed cavity.

Originality/value

Comprehending the impacts of the magnetic field, Joule heating, internal heat generation and enclosed or open boundary on pure MHD combined free-forced convective flow offers valuable understandings of temperature fluctuations, velocity propagations, heat transport and irretrievable energy loss in numerous engineering applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 July 2024

Francisco Sánchez-Moreno, David MacManus, Fernando Tejero, Josep Hueso-Rebassa and Christopher Sheaf

The decrease in specific thrust achieved by Ultra-High Bypass Ratio (UHBPR) aero-engines allows for a reduction in specific fuel consumption. However, the typical associated…

Abstract

Purpose

The decrease in specific thrust achieved by Ultra-High Bypass Ratio (UHBPR) aero-engines allows for a reduction in specific fuel consumption. However, the typical associated larger fan size might increase the nacelle drag, weight and the detrimental interference effects with the airframe. Consequently, the benefits from the new UHBPR aero-engine cycle may be eroded. This paper aims to evaluate the potential improvement in the aerodynamic performance of compact nacelles for installed aero-engine configuration.

Design/methodology/approach

Drooped and scarfed non-axisymmetric compact and conventional nacelle designs were down selected from a multi-point CFD-based optimisation. These were computationally assessed at a set of installation positions on a contemporary wide-body, twin-engine transonic aircraft. Both cruise and off-design conditions were evaluated. A thrust and drag accounting method was applied to evaluate different aircraft, powerplant and nacelle performance metrics.

Findings

The aircraft with the compact nacelle configuration installed at a typical installation position provided a reduction in aircraft cruise fuel consumption of 0.44% relative to the conventional architecture. However, at the same installation position, the compact design exhibits a large flow separation at windmilling conditions that is translated into an overall aircraft drag penalty of approximately 5.6% of the standard cruise net thrust. Additionally, the interference effects of a compact nacelle are more sensitive to deviations in mass flow capture ratio (MFCR) from the nominal windmilling diversion condition.

Originality/value

This work provides a comprehensive analysis of not only the performance but also the aerodynamics at an aircraft level of compact nacelles compared to conventional configurations for a range of installations positions at cruise. Additionally, the engine-airframe integration aerodynamics is assessed at an off-design windmilling condition which constitutes a key novelty of this paper.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 34