Search results

21 – 30 of over 181000
Article
Publication date: 31 July 2009

Lino Costa and Rui Vilar

The purpose of this paper is to review the state of the art of laser powder deposition (LPD), a solid freeform fabrication technique capable of fabricating fully dense functional…

4604

Abstract

Purpose

The purpose of this paper is to review the state of the art of laser powder deposition (LPD), a solid freeform fabrication technique capable of fabricating fully dense functional items from a wide range of common engineering materials, such as aluminum alloys, steels, titanium alloys, nickel superalloys and refractory materials.

Design/methodology/approach

The main R&D efforts and the major issues related to LPD are revisited.

Findings

During recent years, a worldwide series of R&D efforts have been undertaken to develop and explore the capabilities of LPD and to tap into the possible cost and time savings and many potential applications that this technology offers.

Originality/value

These R&D efforts have produced a wealth of knowledge, the main points of which are highlighted herein.

Details

Rapid Prototyping Journal, vol. 15 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 13 July 2022

Virendra Kumar Verma, Sachin S. Kamble, L. Ganapathy and Pradeep Kumar Tarei

The purpose of this study is to identify, analyse and model the post-processing barriers of 3D-printed medical models (3DPMM) printed by fused deposition modelling to overcome…

Abstract

Purpose

The purpose of this study is to identify, analyse and model the post-processing barriers of 3D-printed medical models (3DPMM) printed by fused deposition modelling to overcome these barriers for improved operational efficiency in the Indian context.

Design/methodology/approach

The methodology used interpretive structural modelling (ISM), cross-impact matrix multiplication applied to classification (MICMAC) analysis and decision-making trial and evaluation laboratory (DEMATEL) to understand the hierarchical and contextual relations among the barriers of the post-processing.

Findings

A total of 11 post-processing barriers were identified in this study using ISM, literature review and experts’ input. The MICMAC analysis identified support material removal, surface finishing, cleaning, inspection and issues with quality consistency as significant driving barriers for post-processing. MICMAC also identified linkage barriers as well as dependent barriers. The ISM digraph model was developed using a final reachability matrix, which would help practitioners specifically tackle post-processing barriers. Further, the DEMATEL method allows practitioners to emphasize the causal effects of post-processing barriers and guides them in overcoming these barriers.

Research limitations/implications

There may have been a few post-processing barriers that were overlooked by the Indian experts, which might have been important for other country’s perspective.

Practical implications

The presented ISM model and DEMATEL provide directions for operation managers in planning operational strategies for overcoming post-processing issues in the medical 3D-printing industry. Also, managers may formulate operational strategies based on the driving and dependence power of post-processing barriers as well as the causal effects relationships of the barriers.

Originality/value

This study contributes to identifying, analyzing and modelling the post-processing barriers of 3DPMM through a combined ISM and DEMATEL methodology, which has not yet been reviewed. This study also contributes to decision makers developing suitable strategies to overcome the post-processing barriers for improved operational efficiency.

Details

Rapid Prototyping Journal, vol. 29 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 7 September 2022

Abdul Wahab Hashmi, Harlal Singh Mali and Anoj Meena

The purpose of this paper is to study the functionality of additively manufactured (AM) parts, mainly depending on their dimensional accuracy and surface finish. However, the…

Abstract

Purpose

The purpose of this paper is to study the functionality of additively manufactured (AM) parts, mainly depending on their dimensional accuracy and surface finish. However, the products manufactured using AM usually suffer from defects like roughness or uneven surfaces. This paper discusses the various surface quality improvement techniques, including how to reduce surface defects, surface roughness and dimensional accuracy of AM parts.

Design/methodology/approach

There are many different types of popular AM methods. Unfortunately, these AM methods are susceptible to different kinds of surface defects in the product. As a result, pre- and postprocessing efforts and control of various AM process parameters are needed to improve the surface quality and reduce surface roughness.

Findings

In this paper, the various surface quality improvement methods are categorized based on the type of materials, working principles of AM and types of finishing processes. They have been divided into chemical, thermal, mechanical and hybrid-based categories.

Research limitations/implications

The review has evaluated the possibility of various surface finishing methods for enhancing the surface quality of AM parts. It has also discussed the research perspective of these methods for surface finishing of AM parts at micro- to nanolevel surface roughness and better dimensional accuracy.

Originality/value

This paper represents a comprehensive review of surface quality improvement methods for both metals and polymer-based AM parts.

Graphical abstract of surface quality improvement methods

Details

Rapid Prototyping Journal, vol. 29 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 December 2003

George K. Stylios

Examines the ninth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects…

1197

Abstract

Examines the ninth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 15 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 10 May 2013

Sylvia Ehrler

Today a large variety of printed circuit board (PCB) base materials exists on the market and new ones are added frequently. The base material suppliers, having good original…

Abstract

Purpose

Today a large variety of printed circuit board (PCB) base materials exists on the market and new ones are added frequently. The base material suppliers, having good original equipment manufacturer (OEM) marketing, usually present the materials in an early development stage to the end customers. The customers, on the other hand, expect from their PCB suppliers that the materials are fully characterized and that qualification samples are available immediately. In many cases, the process recommendations given to the PCB manufacturers are very generic (“like FR4”), insufficient, or not practicable (“8 hours baking time”). However, optimized processing ensures the reliability of the finished PCBs, starting from general leadfree compatibility to CAF testing. This demonstrates the importance of thoroughly verified process parameters and of very specific process recommendations to minimize the number of costly and time‐consuming iterations, and to be able to meet the goal of submitting qualification samples and functional PCBs in minimum time. The purpose of this paper is to show the minimum required PCB processing recommendations, and why these have to be fixed by the material supplier before commercialization of a new base material.

Design/methodology/approach

The paper examines the base material suppliers' situation, customer expectations and reality and the PCB manufacturers' expectations.

Findings

The paper gives the reasons and consequences of early base material marketing.

Originality/value

The paper analyses today's PCB base materials market and shows the reasons and consequences of early base material marketing. Also, the minimum requirements by PCB fabricators concerning processing recommendations are given.

Article
Publication date: 3 January 2023

Mohammad Saleh Afsharkohan, Saman Dehrooyeh, Majid Sohrabian and Majid Vaseghi

Fabrication settings such as printing speed and nozzle temperature in fused deposition modeling undeniably influence the quality and strength of fabricated parts. As available…

Abstract

Purpose

Fabrication settings such as printing speed and nozzle temperature in fused deposition modeling undeniably influence the quality and strength of fabricated parts. As available market filaments do not contain any exact information report for printing settings, manufacturers are incapable of achieving desirable predefined print accuracy and mechanical properties for the final parts. The purpose of this study is to determine the importance of selecting suitable print parameters by understanding the intrinsic behavior of the material to achieve high-performance parts.

Design/methodology/approach

Two common commercial polylactic acid filaments were selected as the investigated samples. To study the specimens’ printing quality, an appropriate scaffold geometry as a delicate printing sample was printed according to a variety of speeds and nozzle temperatures, selected in the filament manufacturer’s proposed temperature range. Dimensional accuracy and qualitative surface roughness of the specimens made by one of the filaments were evaluated and the best processing parameters were selected. The scaffolds were fabricated again by both filaments according to the selected proper processing parameters. Material characterization tests were accomplished to study the reason for different filament behaviors in the printing process. Moreover, the correlations between the polymer structure, thermo-rheological behavior and printing parameters were denoted.

Findings

Compression tests revealed that precise printing of the characterized filament results in more accurate structure and subsequent improvement of the final printed sample elastic modulus.

Originality/value

The importance of material characterization to achieve desired properties for any purpose was emphasized. Obtained results from the rheological characterizations would help other users to benefit from the highest performance of their specific filament.

Details

Rapid Prototyping Journal, vol. 29 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 10 December 2018

Sunil Kumar Tiwari, Sarang Pande, Santosh M. Bobade and Santosh Kumar

The purpose of this paper is to propose and develop PA2200-based composite powder containing 0-15 Wt.% magnesium oxide before directly using it in selective laser sintering (SLS…

Abstract

Purpose

The purpose of this paper is to propose and develop PA2200-based composite powder containing 0-15 Wt.% magnesium oxide before directly using it in selective laser sintering (SLS) machine to produce end-use products for low-volume production in the engineering applications with keen focus to meet the functional requirements which rely on material properties.

Design/methodology/approach

The methodology reported emphasises PA2200-based composite powder containing 0-15 Wt.% magnesium oxide development for SLS process which starts with preparation and characterisation of composite material, thermal and rheological study of composite material to decide optimum process parameters for SLS process machine to get optimal part properties. Further, to verify composite material properties, a conventional casting methodology is used. The composition of composite materials those possessing good properties are further selected for processing in SLS process under optimal processing parameters.

Findings

The process parameters of SLS machine are material-dependent. The effect of temperature in X-ray diffraction profile is negligible in the case of magnesium oxide reinforced PA2200 composite material. The cyclic heating of material increases melting point temperature, this grounds to modify part bed temperature of material every time before processing on SLS machine to uphold build part properties, as well as material. With the rise in temperature, the Melt flow index and rheological property of materials change. The magnesium oxide reinforced PA2200 composite material has high thermal stability than pure PA2200 material. By the addition of small quantity of magnesium oxide, most of the mechanical property and flammability property improves while elongation at break (percentage) decreases significantly.

Practical implications

The proposed PA2200-based composite powder containing 0-15 Wt.% magnesium oxide material development system and casting metrology to verify developed material properties will be very useful to develop new composite material for SLS process with use of less material. The developed methodology has proven, especially in the case where non-experts or student need to develop composite material for SLS process according to the property requirement of applications.

Originality/value

Unlike earlier composite material development methodology, the projected methodology of polymer-based composite material and confirmation of material properties instead of commencing SLS process provides straight forward means for SLS process composite materials development with less use of the material and period of time.

Details

Rapid Prototyping Journal, vol. 25 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Book part
Publication date: 20 October 2015

Mohammad Shamsuddoha

Contemporary literature reveals that, to date, the poultry livestock sector has not received sufficient research attention. This particular industry suffers from unstructured…

Abstract

Contemporary literature reveals that, to date, the poultry livestock sector has not received sufficient research attention. This particular industry suffers from unstructured supply chain practices, lack of awareness of the implications of the sustainability concept and failure to recycle poultry wastes. The current research thus attempts to develop an integrated supply chain model in the context of poultry industry in Bangladesh. The study considers both sustainability and supply chain issues in order to incorporate them in the poultry supply chain. By placing the forward and reverse supply chains in a single framework, existing problems can be resolved to gain economic, social and environmental benefits, which will be more sustainable than the present practices.

The theoretical underpinning of this research is ‘sustainability’ and the ‘supply chain processes’ in order to examine possible improvements in the poultry production process along with waste management. The research adopts the positivist paradigm and ‘design science’ methods with the support of system dynamics (SD) and the case study methods. Initially, a mental model is developed followed by the causal loop diagram based on in-depth interviews, focus group discussions and observation techniques. The causal model helps to understand the linkages between the associated variables for each issue. Finally, the causal loop diagram is transformed into a stock and flow (quantitative) model, which is a prerequisite for SD-based simulation modelling. A decision support system (DSS) is then developed to analyse the complex decision-making process along the supply chains.

The findings reveal that integration of the supply chain can bring economic, social and environmental sustainability along with a structured production process. It is also observed that the poultry industry can apply the model outcomes in the real-life practices with minor adjustments. This present research has both theoretical and practical implications. The proposed model’s unique characteristics in mitigating the existing problems are supported by the sustainability and supply chain theories. As for practical implications, the poultry industry in Bangladesh can follow the proposed supply chain structure (as par the research model) and test various policies via simulation prior to its application. Positive outcomes of the simulation study may provide enough confidence to implement the desired changes within the industry and their supply chain networks.

Details

Sustaining Competitive Advantage Via Business Intelligence, Knowledge Management, and System Dynamics
Type: Book
ISBN: 978-1-78560-707-3

Keywords

Article
Publication date: 1 March 2001

Feng Lin, Yongnian Yan and Wei Sun

A mathematical model to describe the principle of layered manufacturing and layered fabrication error is presented in this paper. In this model, the layered manufacturing process

Abstract

A mathematical model to describe the principle of layered manufacturing and layered fabrication error is presented in this paper. In this model, the layered manufacturing process is characterized by the model decomposition and material accumulation. A 3D design model is represented by a set of points with sequence functions to correlate the layered processing information. Iso‐sequence planes are defined as the processing layers to collect points with the same processing sequence and to define the material accumulation along its gradient direction. Examples of using the proposed model to describe the layered manufacturing to process flat and no‐flat surfaces and the description of the layered processing error are also presented.

Details

Rapid Prototyping Journal, vol. 7 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 11 July 2022

Meltem Altin Karataş

Inconel 718 (IN718) is a high-performance nickel-based superalloy with high oxidation-corrosion-temperature resistance, high strength (tensile, fatigue, creep and rupture)…

191

Abstract

Purpose

Inconel 718 (IN718) is a high-performance nickel-based superalloy with high oxidation-corrosion-temperature resistance, high strength (tensile, fatigue, creep and rupture), durability, toughness, hardness and dimensional stability, which is difficult to machine with traditional fabrication methods. To overcome these difficulties, wire electrical discharge machining (WEDM), one of the modern manufacturing methods, is used.

Design/methodology/approach

Main performance criteria in WEDM; material removal rate (MRR), cutting speed, surface roughness, cutting width (kerf) and wire wear rate. In this study, the effect of processing parameters on kerf and MRR because of processing IN718 in WEDM was investigated. Machining parameters, voltage, wire feed rate and dielectric fluid pressure were determined. Deionized water was used as a dielectric fluid and 0.3 mm brass wire was used as wire in the experiments. Gray Relational Analysis (GRA), which is one of the multi-criteria decision-making methods, has been applied for the optimization of the machining parameters in the cutting process with the WEDM. Analysis of variance (ANOVA) was used to determine the effect percentages of the cut-off parameters.

Findings

The parameter with the highest effect was determined as tension with a rate of 76.95% for kerf and 91.21% for MRR.

Originality/value

The novel approach uses Taguchi-based GRA optimization as a result of cutting IN718 with WEDM, reducing cost and time consumption.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

21 – 30 of over 181000