Search results

1 – 10 of over 1000
Article
Publication date: 26 March 2024

Xichen Chen, Alice Yan Chang-Richards, Florence Yean Yng Ling, Tak Wing Yiu, Antony Pelosi and Nan Yang

Despite extensive academic research related to digital technologies (DT), their integration into architecture, engineering and construction (AEC) projects lags in practice. This…

Abstract

Purpose

Despite extensive academic research related to digital technologies (DT), their integration into architecture, engineering and construction (AEC) projects lags in practice. This paper aims to discover DT deployment patterns and emerging trends in real-life AEC projects.

Design/methodology/approach

A case study methodology was adopted, including individual case analyses and comparative multiple-case analyses.

Findings

The results revealed the temporal distribution of DT in practical AEC projects, specific DT products/software, major project types integrated with digital solutions, DT application areas and project stages and associated project performance. Three distinct patterns in DT adoption have been observed, reflecting the evolution of DT applications, the progression from single to multiple DT integration and alignment with emerging industry requirements. The DT adoption behavior in the studied cases has been examined using the technology-organization-environment-human (TOE + H) framework. Further, eight emerging trend streams for future DT adoption were identified, with “leveraging the diverse features of certain mature DT” being a shared recognition of all studied companies.

Practical implications

This research offers actionable insights for AEC companies, facilitating the development of customized DT implementation roadmaps aligned with organizational needs. Policymakers, industry associations and DT suppliers may leverage these findings for informed decision-making, collaborative educational initiatives and product/service customization.

Originality/value

This research provides empirical evidence of applicable products/software, application areas and project performance. The examination of the TOE + H framework offers a holistic understanding of the collective influences on DT adoption. The identification of emerging trends addresses the evolving demands of the AEC industry in the digital era.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 2 January 2024

Xin Zou and Zhuang Rong

In repetitive projects, repetition offers more possibilities for activity scheduling at the sub-activity level. However, existing resource-constrained repetitive scheduling…

Abstract

Purpose

In repetitive projects, repetition offers more possibilities for activity scheduling at the sub-activity level. However, existing resource-constrained repetitive scheduling problem (RCRSP) models assume that there is only one sequence in performing the sub-activities of each activity, resulting in an inefficient resource allocation. This paper proposes a novel repetitive scheduling model for solving RCRSP with soft logic.

Design/methodology/approach

In this paper, a constraint programming model is developed to solve the RCRSP using soft logic, aiming at the possible relationship between parallel execution, orderly execution or partial parallel and partial orderly execution of different sub activities of the same activity in repetitive projects. The proposed model integrated crew assignment strategies and allowed continuous or fragmented execution.

Findings

When solving RCRSP, it is necessary to take soft logic into account. If managers only consider the fixed logic between sub-activities, they are likely to develop a delayed schedule. The practicality and effectiveness of the model were verified by a housing project based on eight different scenarios. The results showed that the constraint programming model outperformed its equivalent mathematical model in terms of solving speed and solution quality.

Originality/value

Available studies assume a fixed logic between sub-activities of the same activity in repetitive projects. However, there is no fixed construction sequence between sub-activities for some projects, e.g. hotel renovation projects. Therefore, this paper considers the soft logic relationship between sub-activities and investigates how to make the objective optimal without violating the resource availability constraint.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 2 April 2024

Mahmoud Mawed

The UAE is among the fastest-growing facilities management (FM) markets globally. Nevertheless, conclusive evidence on this market is scarce in the literature. Therefore, this…

Abstract

Purpose

The UAE is among the fastest-growing facilities management (FM) markets globally. Nevertheless, conclusive evidence on this market is scarce in the literature. Therefore, this paper aims to provide an in-depth insight into the FM market in the UAE.

Design/methodology/approach

Fourteen interviewees were purposively selected to provide insight into FM status through their field experiences. A SWOT analysis of their answers held place.

Findings

Interviewees revealed that the main trends of FM in the UAE include interests in sustainability, integration of technology, health and safety, outsourcing FM, switching to total facilities management (TFM), and performance management systems use. Besides, the quality of the service in the FM market is driven by the real-estate boom, services sophistication, the increasing awareness of FM and focus on the quality of services. Furthermore, the interviews found that the recruitment of poorly skilled labors can threaten the FM market to meet the allocated budget, misperception of FM, the value of money, the lack of continuous follow-up with recent advancements in technologies and the lack of performance measurement models.

Originality/value

This paper highlights the major trends, drivers and threats of the FM market in the UAE, and the implications of its findings can direct FM organizations and researchers in their practices.

Article
Publication date: 15 January 2024

Yongjian Wang, Xigang Yuan and Fei Wang

This paper aims to compare and analyze the effect of the dual-credit policy and product substitution rate on the automakers’ operational strategies under different production…

Abstract

Purpose

This paper aims to compare and analyze the effect of the dual-credit policy and product substitution rate on the automakers’ operational strategies under different production modes (e.g. centralized and independent), and further illustrate which production mode is more conducive to improving new energy vehicle (NEV) development.

Design/methodology/approach

The decision-making models for a centralized production mode where an integrated automaker produces both NEVs and fuel vehicles (FVs) and for independent production mode where an NEV automaker faces competition from a traditional FV automaker were formulated. The equilibrium solutions of each production mode were obtained by extreme value and game theory methods. The conclusions of the theoretical analysis were further verified with numerical analyses using IBM-MATLAB R2019a. Some management insights could be obtained by comparison analysis.

Findings

Under the dual-credit policy, an increase in the NEV credit trading price will always raise production quantity of NEVs, but only in an independent production mode where a higher trading price will also bring higher total profits to NEV automakers. In addition, only when the NEV credit trading price is high enough, a rising product substitution rate will be more favorable to NEV production and restrain FV production. Furthermore, an independent production mode is more favorable for the initial production of NEVs, but as each of the two vehicle types captures a certain amount of market share, a centralized production mode will be more conducive to the full replacement of FVs by NEVs.

Originality/value

The main contributions of this study include the formulation of decision-making models for FVs and NEVs in not only a centralized production mode but also an independent production mode. Moreover, this paper comprehensively analyzes how the dual-credit policy and product substitution relationship affect automakers’ production and pricing decisions. Then, the specific conditions under which each production mode is more conducive to NEV production and sales are summarized. The results proposed in this study provide scientific managerial insights for automakers and policy makers.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 6 February 2024

Miguel Núñez-Merino, Juan Manuel Maqueira-Marín, José Moyano-Fuentes and Carlos Alberto Castaño-Moraga

The purpose of this paper is to explore and disseminate knowledge about quantum-inspired computing technology's potential to solve complex challenges faced by the operational…

Abstract

Purpose

The purpose of this paper is to explore and disseminate knowledge about quantum-inspired computing technology's potential to solve complex challenges faced by the operational agility capability in Industry 4.0 manufacturing and logistics operations.

Design/methodology/approach

A multi-case study approach is used to determine the impact of quantum-inspired computing technology in manufacturing and logistics processes from the supplier perspective. A literature review provides the basis for a framework to identify a set of flexibility and agility operational capabilities enabled by Industry 4.0 Information and Digital Technologies. The use cases are analyzed in depth, first individually and then jointly.

Findings

Study results suggest that quantum-inspired computing technology has the potential to harness and boost companies' operational flexibility to enhance operational agility in manufacturing and logistics operations management, particularly in the Industry 4.0 context. An exploratory model is proposed to explain the relationships between quantum-inspired computing technology and the deployment of operational agility capabilities.

Originality/value

This is study explores the use of quantum-inspired computing technology in Industry 4.0 operations management and contributes to understanding its potential to enable operational agility capability in manufacturing and logistics operations.

Details

International Journal of Physical Distribution & Logistics Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0960-0035

Keywords

Article
Publication date: 27 March 2023

Yiran Dan and Guiwen Liu

Production and transportation of precast components, as two continuous service stages of a precast plant, play an important role in meeting customer needs and controlling costs…

Abstract

Purpose

Production and transportation of precast components, as two continuous service stages of a precast plant, play an important role in meeting customer needs and controlling costs. However, there is still a lack of production and transportation scheduling methods that comprehensively consider delivery timeliness and transportation economy. This article aims to study the integrated scheduling optimization problem of in-plant flowshop production and off-plant transportation under the consideration of practical constraints of customer order delivery time window, and seek an optimal scheduling method that balances delivery timeliness and transportation economy.

Design/methodology/approach

In this study, an integrated scheduling optimization model of flowshop production and transportation for precast components with delivery time windows is established, which describes the relationship between production and transportation and handles transportation constraints under the premise of balancing delivery timeliness and transportation economy. Then a genetic algorithm is designed to solve this model. It realizes the integrated scheduling of production and transportation through double-layer chromosome coding. A program is designed to realize the solution process. Finally, the validity of the model is proved by the calculation of actual enterprise data.

Findings

The optimized scheduling scheme can not only meet the on-time delivery, but also improve the truck loading rate and reduce the total cost, composed of early cost in plant, delivery penalty cost and transportation cost. In the model validation, the optimal scheduling scheme uses one less truck than the traditional EDD scheme (saving 20% of the transportation cost), and the total cost can be saved by 17.22%.

Originality/value

This study clarifies the relationship between the production and transportation of precast components and establishes the integrated scheduling optimization model and its solution algorithm. Different from previous studies, the proposed optimization model can balance the timeliness and economy of production and transportation for precast components.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 30 April 2024

Niharika Varshney, Srikant Gupta and Aquil Ahmed

This study aims to address the inherent uncertainties within closed-loop supply chain (CLSC) networks through the application of a multi-objective approach, specifically focusing…

Abstract

Purpose

This study aims to address the inherent uncertainties within closed-loop supply chain (CLSC) networks through the application of a multi-objective approach, specifically focusing on the optimization of integrated production and transportation processes. The primary purpose is to enhance decision-making in supply chain management by formulating a robust multi-objective model.

Design/methodology/approach

In dealing with uncertainty, this study uses Pythagorean fuzzy numbers (PFNs) to effectively represent and quantify uncertainties associated with various parameters within the CLSC network. The proposed model is solved using Pythagorean hesitant fuzzy programming, presenting a comprehensive and innovative methodology designed explicitly for handling uncertainties inherent in CLSC contexts.

Findings

The research findings highlight the effectiveness and reliability of the proposed framework for addressing uncertainties within CLSC networks. Through a comparative analysis with other established approaches, the model demonstrates its robustness, showcasing its potential to make informed and resilient decisions in supply chain management.

Research limitations/implications

This study successfully addressed uncertainty in CLSC networks, providing logistics managers with a robust decision-making framework. Emphasizing the importance of PFNs and Pythagorean hesitant fuzzy programming, the research offered practical insights for optimizing transportation routes and resource allocation. Future research could explore dynamic factors in CLSCs, integrate real-time data and leverage emerging technologies for more agile and sustainable supply chain management.

Originality/value

This research contributes significantly to the field by introducing a novel and comprehensive methodology for managing uncertainty in CLSC networks. The adoption of PFNs and Pythagorean hesitant fuzzy programming offers an original and valuable approach to addressing uncertainties, providing practitioners and decision-makers with insights to make informed and resilient decisions in supply chain management.

Details

Journal of Modelling in Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 31 July 2023

Anurag Tiwari and Priyabrata Mohapatra

The purpose of this study is to formulate a new class of vehicle routing problem with an objective to minimise the total cost of raw material collection and derive a new approach…

Abstract

Purpose

The purpose of this study is to formulate a new class of vehicle routing problem with an objective to minimise the total cost of raw material collection and derive a new approach to solve optimization problems. This study can help to select the optimum number of suppliers based on cost.

Design/methodology/approach

To model the raw material vehicle routing problem, a mixed integer linear programming (MILP) problem is formulated. An interesting phenomenon added to the proposed problem is that there is no compulsion to visit all suppliers. To guarantee the demand of semiconductor industry, all visited suppliers should reach a given raw material capacity requirement. To solve the proposed model, the authors developed a novel hybrid approach that is a combination of block and edge recombination approaches. To avoid bias, the authors compare the results of the proposed methodology with other known approaches, such as genetic algorithms (GAs) and ant colony optimisation (ACO).

Findings

The findings indicate that the proposed model can be useful in industries, where multiple suppliers are used. The proposed hybrid approach provides a better sequence of suppliers compared to other heuristic techniques.

Research limitations/implications

The data used in the proposed model is generated based on previous literature. The problem derives from the assumption that semiconductor industries use a variety of raw materials.

Practical implications

This study provides a new model and approach that can help practitioners and policymakers select suppliers based on their logistics costs.

Originality/value

This study provides two important contributions in the context of the supply chain. First, it provides a new variant of the vehicle routing problem in consideration of raw material collection; and second, it provides a new approach to solving optimisation problems.

Details

Benchmarking: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 6 February 2024

S. P. Sreenivas Padala and Prabhanjan M. Skanda

The purpose of this paper is to develop a building information modelling (BIM)-based multi-objective optimization (MOO) framework for volumetric analysis of buildings during early…

Abstract

Purpose

The purpose of this paper is to develop a building information modelling (BIM)-based multi-objective optimization (MOO) framework for volumetric analysis of buildings during early design stages. The objective is to optimize volumetric spaces (3D) instead of 2D spaces to enhance space utilization, thermal comfort, constructability and rental value of buildings

Design/methodology/approach

The integration of two fundamental concepts – BIM and MOO, forms the basis of proposed framework. In the early design phases of a project, BIM is used to generate precise building volume data. The non-sorting genetic algorithm-II, a MOO algorithm, is then used to optimize extracted volume data from 3D BIM models, considering four objectives: space utilization, thermal comfort, rental value and construction cost. The framework is implemented in context of a school of architecture building project.

Findings

The findings of case study demonstrate significant improvements resulting from MOO of building volumes. Space utilization increased by 30%, while thermal comfort improved by 20%, and construction costs were reduced by 10%. Furthermore, rental value of the case study building increased by 33%.

Practical implications

The proposed framework offers practical implications by enabling project teams to generate optimal building floor layouts during early design stages, thereby avoiding late costly changes during construction phase of project.

Originality/value

The integration of BIM and MOO in this study provides a unique approach to optimize building volumes considering multiple factors during early design stages of a project

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 24 April 2024

Haider Jouma, Muhamad Mansor, Muhamad Safwan Abd Rahman, Yong Jia Ying and Hazlie Mokhlis

This study aims to investigate the daily performance of the proposed microgrid (MG) that comprises photovoltaic, wind turbines and is connected to the main grid. The load demand…

Abstract

Purpose

This study aims to investigate the daily performance of the proposed microgrid (MG) that comprises photovoltaic, wind turbines and is connected to the main grid. The load demand is a residential area that includes 20 houses.

Design/methodology/approach

The daily operational strategy of the proposed MG allows to vend and procure utterly between the main grid and MG. The smart metre of every consumer provides the supplier with the daily consumption pattern which is amended by demand side management (DSM). The daily operational cost (DOC) CO2 emission and other measures are utilized to evaluate the system performance. A grey wolf optimizer was employed to minimize DOC including the cost of procuring energy from the main grid, the emission cost and the revenue of sold energy to the main grid.

Findings

The obtained results of winter and summer days revealed that DSM significantly improved the system performance from the economic and environmental perspectives. With DSM, DOC on winter day was −26.93 ($/kWh) and on summer day, DOC was 10.59 ($/kWh). While without considering DSM, DOC on winter day was −25.42 ($/kWh) and on summer day DOC was 14.95 ($/kWh).

Originality/value

As opposed to previous research that predominantly addressed the long-term operation, the value of the proposed research is to investigate the short-term operation (24-hour) of MG that copes with vital contingencies associated with selling and procuring energy with the main grid considering the environmental cost. Outstandingly, the proposed research engaged the consumers by smart meters to apply demand-sideDSM, while the previous studies largely focused on supply side management.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

1 – 10 of over 1000