Search results

1 – 2 of 2
Article
Publication date: 22 June 2012

Hala J. El‐Khozondar, Rifa J. El‐Khozondar, Mathias S. Müller and A.W. Koch

The purpose of this paper is to consider a detailed investigation of transversal magnetic (TM) nonlinear magnetooptical integrated optical sensor. The sensitivities of two sensors…

Abstract

Purpose

The purpose of this paper is to consider a detailed investigation of transversal magnetic (TM) nonlinear magnetooptical integrated optical sensor. The sensitivities of two sensors are presented. The first sensor composed of a dielectric thin film surrounded by a lossless, nonmagnetic, isotropic cladding exhibiting a local Kerr‐like dielectric nonlinearity, and a magnetic substrate chosen to be an iron garnet. The second sensor is formed by exchanging the cladding and the substrate media of the first sensor. The homogenous sensitivities of both sensors are calculated as a function of the waveguide thickness and the effective refractive index. The effect of nonlinearity on the sensitivities for both sensors is investigated.

Design/methodology/approach

The homogenous sensitivities of both sensors are calculated as a function of the waveguide thickness and the effective refractive index. The effect of nonlinearity on the sensitivities for both sensors is investigated. Numerical calculations are performed using the Maple program.

Findings

It was found that the sensitivity for the first sensor sensitivity increases with nonlinearity. While the sensitivity for the second sensor is hardly affected by the change of nonlinearity. It was also found that the thickness of the guiding layer is a critical parameter for the sensitivity of the optical sensor with the optimum thickness being just above cut‐off in case of the first structure and at the cut‐off in the case of the second structure.

Originality/value

A detailed investigation of TM nonlinear magnetooptical integrated optical sensor is considered. The two proposed structures are used to investigate the parameters to get the optimal sensitivity, which is an important issue is the sensor design.

Details

Multidiscipline Modeling in Materials and Structures, vol. 8 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 3 January 2017

P. Sudarsana Reddy and A. Chamkha

In recent years, nanofluids are being widely used in many thermal systems because of their higher thermal conductivity and heat transfer rate. The higher thermal conductivity…

Abstract

Purpose

In recent years, nanofluids are being widely used in many thermal systems because of their higher thermal conductivity and heat transfer rate. The higher thermal conductivity depends on many parameters such as size, shape and volume and the Brownian motion and thermophoresis of added nanoparticles. The purpose of this paper is to analyze the influence of the Brownian motion and thermophoresis on natural convection heat and mass transfer boundary layer flow of nanofluids over a vertical cone with radiation.

Design/methodology/approach

Using similarity variables, the non-linear partial differential equations, which represent momentum, energy and diffusion, are transformed into ordinary differential equations. The transformed conservation equations are solved numerically subject to the boundary conditions by using versatile, extensively validated, variational finite-element method.

Findings

The sway of significant parameters such as magnetic field (M), buoyancy ratio parameter (Nr), Brownian motion parameter (Nb), thermophoresis parameter (Nt), thermal radiation (R), Lewis number (Le) and chemical reaction parameter (Cr) on velocity, temperature and concentration evaluation in the boundary layer region is examined in detail. The results are compared with previously published work and are found to be in agreement. The velocity distributions are reduced, while temperature and concentration profiles elevate with a higher (M). With the improving values of (R), the velocity and temperature sketches improve, while concentration distributions are lowered in the boundary layer region. The temperature and concentration profiles are elevated in the boundary layer region for higher values of (Nt). With the increasing values of (Nb), temperature profiles are enhanced, whereas concentration profiles get depreciated in the flow region.

Social implications

In recent years, it has been found that magneto-nanofluids are significant in many areas of science and technology. It has applications in optical modulators, magnetooptical wavelength filters, tunable optical fiber filters and optical switches. Magnetic nanoparticles are especially useful in biomedicine, sink float separation, cancer therapy, etc. Specific biomedical applications involving nanofluids include hyperthermia, magnetic cell separation, drug delivery and contrast enhancement in magnetic resonance imaging.

Originality/value

To the best of the authors’ knowledge, no studies have assessed the impact of the two slip effects, namely, Brownian motion and thermophoresis, on the natural convection of electrically conducted heat and mass transfer to the nanofluid boundary layer flow over a vertical cone in the presence of radiation and chemical reaction; therefore, this problem has been addressed in this study. Comparison of the results of this study’s with those of previously published work was found to be in good agreement.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 2 of 2