Search results

1 – 6 of 6
Article
Publication date: 29 November 2018

Jayarami Reddy Konda, Madhusudhana Reddy N.P., Ramakrishna Konijeti and Abhishek Dasore

The purpose of this paper is to examine the influence of magnetic field on Williamson nanofluid embedded in a porous medium in the presence of non-uniform heat source/sink…

Abstract

Purpose

The purpose of this paper is to examine the influence of magnetic field on Williamson nanofluid embedded in a porous medium in the presence of non-uniform heat source/sink, chemical reaction and thermal radiation effects.

Design/methodology/approach

The governing physical problem is presented using the traditional Navier–Stokes theory. Consequential system of equations is transformed into a set of non-linear ordinary differential equations by means of scaling group of transformation, which are solved using the Runge–Kutta–Fehlberg method.

Findings

The working fluid is examined for several sundry parameters graphically and in a tabular form. It is noticed that with an increase in Eckert number, there is an increase in velocity and temperature along with a decrease in shear stress and heat transfer rate.

Originality/value

A good agreement of the present results has been observed by comparing with the existing literature results.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 11 April 2018

Jayarami Reddy Konda, Madhusudhana N.P. and Ramakrishna Konijeti

The purpose of this paper is to discuss the flow of Casson nanofluid past a nonlinear permeable stretching sheet in the presence of thermal radiation, chemical reaction, viscous…

Abstract

Purpose

The purpose of this paper is to discuss the flow of Casson nanofluid past a nonlinear permeable stretching sheet in the presence of thermal radiation, chemical reaction, viscous dissipation, heat source, and magnetohydrodynamics.

Design/methodology/approach

Appropriate transformations are used to convert the boundary layer equations into nonlinear ODEs which are then solved numerically by using the Runge-Kutta-Fehlberg fourth-fifth order method along with shooting technique.

Findings

Solution of this systems is obtained for velocity, temperature, and concentration profiles. Graphical illustrations are added to discuss the effect of evolving parameters against above-mentioned distributions. Tabular values of local skin friction factor, local Nusselt number, and local Sherwood number are also added and studied accordingly.

Originality/value

A good agreement of the present results has been observed by comparing with the existing literature results. It is noted that skin friction coefficient, Nusselt number, and Sherwood number decrease with Casson parameter and increase with suction parameter.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 June 1997

Jaroslav Mackerle

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the…

6053

Abstract

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view. The range of applications of FEMs in this area is wide and cannot be presented in a single paper; therefore aims to give the reader an encyclopaedic view on the subject. The bibliography at the end of the paper contains 2,025 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1992‐1995.

Details

Engineering Computations, vol. 14 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 23 March 2012

Aashis S. Roy, Ameena Parveen, Ambika Prasad and Koppalkar R. Anilkumar

The purpose of this paper is to study the sensitivity and selectivity properties of polyaniline/tantalum pentoxide (PANI/Ta2O5) composite to liquid petroleum gas (LPG).

Abstract

Purpose

The purpose of this paper is to study the sensitivity and selectivity properties of polyaniline/tantalum pentoxide (PANI/Ta2O5) composite to liquid petroleum gas (LPG).

Design/methodology/approach

Polyaniline/tantalum pentaoxide (PANI/Ta2O5) composites were synthesized by in situ chemical polymerization method using ammonium persulphate as an oxidizing agent. This is the novel polymerization process for the direct synthesis of emeraldine salt phase of the polymer. The composites were characterized by FTIR, XRD and SEM. Temperature dependence conductivity of the composites shows thermally activated behaviour. Sensitivity and selectivity of the composites are studied.

Findings

The PANI/ Ta2O5 composites of 20 wt% and 30 wt% are showing maximum change in resistance against time when compared to pure PANI and other polyaniline composites when exposed to LPG. The 20 wt % composites show maximum sensitivity of 83% to LPG. The selectivity studies reveals that LPG could be sensed better when compared to oxyacetylene and other test gases.

Practical implications

Selectivity studies have been carried out and the sensor proved to be better than metal oxides sensors.

Social implications

The sensing material is of low cost.

Originality/value

To the best of the authors' knowledge, studies on Ta2O5‐based gas sensor have not been reported previously.

Article
Publication date: 26 September 2023

Thameem Hayath Basha, Sivaraj Ramachandran and Bongsoo Jang

The need for precise synthesis of customized designs has resulted in the development of advanced coating processes for modern nanomaterials. Achieving accuracy in these processes…

Abstract

Purpose

The need for precise synthesis of customized designs has resulted in the development of advanced coating processes for modern nanomaterials. Achieving accuracy in these processes requires a deep understanding of thermophysical behavior, rheology and complex chemical reactions. The manufacturing flow processes for these coatings are intricate and involve heat and mass transfer phenomena. Magnetic nanoparticles are being used to create intelligent coatings that can be externally manipulated, making them highly desirable. In this study, a Keller box calculation is used to investigate the flow of a coating nanofluid containing a viscoelastic polymer over a circular cylinder.

Design/methodology/approach

The rheology of the coating polymer nanofluid is described using the viscoelastic model, while the effects of nanoscale are accounted for by using Buongiorno’s two-component model. The nonlinear PDEs are transformed into dimensionless PDEs via a nonsimilar transformation. The dimensionless PDEs are then solved using the Keller box method.

Findings

The transport phenomena are analyzed through a comprehensive parametric study that investigates the effects of various emerging parameters, including thermal radiation, Biot number, Eckert number, Brownian motion, magnetic field and thermophoresis. The results of the numerical analysis, such as the physical variables and flow field, are presented graphically. The momentum boundary layer thickness of the viscoelastic polymer nanofluid decreases as fluid parameter increases. An increase in mixed convection parameter leads to a rise in the Nusselt number. The enhancement of the Brinkman number and Biot number results in an increase in the total entropy generation of the viscoelastic polymer nanofluid.

Practical implications

Intelligent materials rely heavily on the critical characteristic of viscoelasticity, which displays both viscous and elastic effects. Viscoelastic models provide a comprehensive framework for capturing a range of polymeric characteristics, such as stress relaxation, retardation, stretching and molecular reorientation. Consequently, they are a valuable tool in smart coating technologies, as well as in various applications like supercapacitor electrodes, solar collector receivers and power generation. This study has practical applications in the field of coating engineering components that use smart magnetic nanofluids. The results of this research can be used to analyze the dimensions of velocity profiles, heat and mass transfer, which are important factors in coating engineering. The study is a valuable contribution to the literature because it takes into account Joule heating, nonlinear convection and viscous dissipation effects, which have a significant impact on the thermofluid transport characteristics of the coating.

Originality/value

The momentum boundary layer thickness of the viscoelastic polymer nanofluid decreases as the fluid parameter increases. An increase in the mixed convection parameter leads to a rise in the Nusselt number. The enhancement of the Brinkman number and Biot number results in an increase in the total entropy generation of the viscoelastic polymer nanofluid. Increasing the strength of the magnetic field promotes an increase in the density of the streamlines. An increase in the mixed convection parameter results in a decrease in the isotherms and isoconcentration.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 August 2020

Nurul Fatin Syazleen Mohamad Shariff, Thangam Singgampalam, Chean Hui Ng and Chin Siang Kue

Moringa oleifera (MO) is a herbal remedy that is rich in essential amino acids and phytochemicals in the leaves, seeds and pods. It is becoming a famous food in various ethnic…

Abstract

Purpose

Moringa oleifera (MO) is a herbal remedy that is rich in essential amino acids and phytochemicals in the leaves, seeds and pods. It is becoming a famous food in various ethnic groups, and the consumption is increasing worldwide. However, there is no safety profile of the hydroalcoholic MO leaf extracts, or documented teratogenicity aspect. This study was sought to compare the antioxidant activity and the teratogenicity of hydroalcoholic MO leaf extracts in the zebrafish embryo.

Design/methodology/approach

MO leaves were extracted with aqueous alcohols (ethanol or methanol: water, 80:20 v/v) using the Soxhlet method. The antioxidant capacity was determined using DPPH assay. The concentrations of extracts ranging from 3 to 1,000 µg/mL were used to examine the toxicity and teratogenicity on the zebrafish embryo.

Findings

Both hydroalcoholic MO leaf extracts were positive for alkaloids, terpenoids, steroids, tannins, flavonoids, phenols, coumarins, quinones and glycosides, except saponins only absent in aqueous methanol extract. The antioxidant capacity based on lC50, was 15.92 ± 3.62 mg/mL for aqueous methanolic and 25.28 ± 2.89 mg/mL for aqueous ethanolic extract. For acute toxicity, the aqueous methanolic extract has lower LC50 (163.87 ± 12.88 µg/mL) compared to aqueous ethanolic extract (337.48 ± 30.04 µg/mL). The embryo treated with aqueous methanolic extract showed phenotypic defect but not on the aqueous ethanolic extract.

Originality/value

This study suggests that aqueous methanol of MO leaves extract has better antioxidant capacity compared to ethanol, and ethanolic leaf extract is safer (higher LC50 and no teratogenicity) than methanolic extract.

Details

British Food Journal, vol. 122 no. 10
Type: Research Article
ISSN: 0007-070X

Keywords

1 – 6 of 6