Search results

1 – 10 of 677
Article
Publication date: 6 May 2020

S. Das, R.R. Patra and R.N. Jana

The purpose of this study is to present the significance of Joule heating, viscous dissipation, magnetic field and slip condition on the boundary layer flow of an electrically…

Abstract

Purpose

The purpose of this study is to present the significance of Joule heating, viscous dissipation, magnetic field and slip condition on the boundary layer flow of an electrically conducting Boussinesq couple-stress fluid induced by an exponentially stretching sheet embedded in a porous medium under the effect of the magnetic field of the variable kind. The heat transfer phenomenon is accounted for under thermal radiation, Joule and viscous dissipation effects.

Design/methodology/approach

The governing nonlinear partial differential equations are transformed to the nonlinear ordinary differential equations (ODEs) by using some appropriate dimensionless variables and then the consequential nonlinear ODEs are solved numerically by making the use of the well-known shooting iteration technique along with the standard fourth-order Runge–Kutta integration scheme. The impact of emerging flow parameters on velocity and temperature profiles, streamlines, local skin friction coefficient and Nusselt number are described comprehensively through graphs and tables.

Findings

Results reveal that the velocity profile is observed to diminish considerably within the boundary layer in the presence of a magnetic field and slip condition. The enhanced radiation parameter is to decline the temperature field. The slip effect is favorable for fluid flow.

Originality/value

Till now, slip effect on Boussinesq couple-stress fluid over an exponentially stretching sheet embedded in a porous medium has not been explored. The present results are validated with the previously published study and found to be highly satisfactory.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 11 April 2018

Jayarami Reddy Konda, Madhusudhana N.P. and Ramakrishna Konijeti

The purpose of this paper is to discuss the flow of Casson nanofluid past a nonlinear permeable stretching sheet in the presence of thermal radiation, chemical reaction, viscous…

Abstract

Purpose

The purpose of this paper is to discuss the flow of Casson nanofluid past a nonlinear permeable stretching sheet in the presence of thermal radiation, chemical reaction, viscous dissipation, heat source, and magnetohydrodynamics.

Design/methodology/approach

Appropriate transformations are used to convert the boundary layer equations into nonlinear ODEs which are then solved numerically by using the Runge-Kutta-Fehlberg fourth-fifth order method along with shooting technique.

Findings

Solution of this systems is obtained for velocity, temperature, and concentration profiles. Graphical illustrations are added to discuss the effect of evolving parameters against above-mentioned distributions. Tabular values of local skin friction factor, local Nusselt number, and local Sherwood number are also added and studied accordingly.

Originality/value

A good agreement of the present results has been observed by comparing with the existing literature results. It is noted that skin friction coefficient, Nusselt number, and Sherwood number decrease with Casson parameter and increase with suction parameter.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 6 December 2020

S. Das, Akram Ali and R.N. Jana

In this communication, a theoretical simulation is aimed to characterize the Darcy–Forchheimer flow of a magneto-couple stress fluid over an inclined exponentially stretching sheet

Abstract

Purpose

In this communication, a theoretical simulation is aimed to characterize the Darcy–Forchheimer flow of a magneto-couple stress fluid over an inclined exponentially stretching sheet. Stokes’ couple stress model is deployed to simulate non-Newtonian microstructural characteristics. Two different kinds of thermal boundary conditions, namely, the prescribed exponential order surface temperature (PEST) and prescribed exponential order heat flux, are considered in the heat transfer analysis. Joule heating (Ohmic dissipation), viscous dissipation and heat source/sink impacts are also included in the energy equation because these phenomena arise frequently in magnetic materials processing.

Design/methodology/approach

The governing partial differential equations are transformed into nonlinear ordinary differential equations (ODEs) by adopting suitable similar transformations. The resulting system of nonlinear ODEs is tackled numerically by using the Runge–Kutta fourth (RK4)-order numerical integration scheme based on the shooting technique. The impacts of sundry parameters on stream function, velocity and temperature profiles are viewed with the help of graphical illustrations. For engineering interests, the physical implication of the said parameters on skin friction coefficient, Nussult number and surface temperature are discussed numerically through tables.

Findings

As a key outcome, it is noted that the augmented Chandrasekhar number, porosity parameter and Forchhemeir parameter diminish the stream function as well as the velocity profile. The behavior of the Darcian drag force is similar to the magnetic field on fluid flow. Temperature profiles are generally upsurged with the greater magnetic field, couple stress parameter and porosity parameter, and are consistently higher for the PEST case.

Practical implications

The findings obtained from this analysis can be applied in magnetic material processing, metallurgy, casting, filtration of liquid metals, gas-cleaning filtration, cooling of metallic sheets, petroleum industries, geothermal operations, boundary layer resistors in aerodynamics, etc.

Originality/value

From the literature review, it has been found that the Darcy–Forchheimer flow of a magneto-couple stress fluid over an inclined exponentially stretching surface with heat flux conditions is still scarce. The numerical data of the present results are validated with the already existing studies under limited cases and inferred to have good concord.

Details

World Journal of Engineering, vol. 18 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 8 February 2022

Umair Khan, Aurang Zaib, Ioan Pop, Iskandar Waini and Anuar Ishak

Nanofluid research has piqued the interest of scientists due to its intriguing applications in nanoscience, biomedical and electrical engineering, medication delivery…

Abstract

Purpose

Nanofluid research has piqued the interest of scientists due to its intriguing applications in nanoscience, biomedical and electrical engineering, medication delivery, biotechnology, food processing, chemotherapy and other fields. This paper aims to inspect the behavior of the mixed convection magnetohydrodynamic flow and heat transfer induced by a nonlinear stretching/shrinking sheet in a nanofluid with a convective boundary condition. Tiwari and Das mathematical nanofluid model is incorporated in the analysis.

Design/methodology/approach

The mathematical model is initially transformed to a nondimensional form by using dimensionless variables. Then the nondimensional partial differential equations are further transformed to a set of similarity equations by using the similarity technique. These equations are solved numerically by the bvp4c function in MATLAB software.

Findings

For a certain range of the stretching/shrinking parameter, two solutions are obtained. The friction factor and the heat transfer rate escalate due to suction parameter with adding nanoparticles volume fraction by almost 27.15% and 0.153% for the upper branch solution, while the friction factor declines by almost 30.10% but the heat transfer rate augments by 0.145% for the lower branch solution. Furthermore, the behavior of the nanoparticle volume fractions on the heat transfer rate behaves differently in the presence of the mixed convection effect. The temperature of fluid augments with increasing Biot number for both solutions.

Originality/value

The present work considers the flow and heat transfer induced by a stretching/shrinking sheet in a nanofluid using the Tiwari–Das nanofluid model with a convective boundary condition, where the effect of the buoyancy force is taken into consideration. It is shown that two solutions are found for a certain range of the shrinking strength, while the solution is unique for the stretching case. This study is important for scientists working in the growing field of nanofluids to become familiar with the flow properties and behaviors of such nanofluids.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 18 June 2020

M. Gnaneswara Reddy, P. Vijayakumari, L. Krishna, K. Ganesh Kumar and B.C Prasannakumara

In this framework, the three dimensional (3D) flow of hydromagnetic Carreau nanofluid transport over a stretching sheet has been addressed by considering the impacts of nonlinear

Abstract

Purpose

In this framework, the three dimensional (3D) flow of hydromagnetic Carreau nanofluid transport over a stretching sheet has been addressed by considering the impacts of nonlinear thermal radiation and convective conditions.

Design/methodology/approach

Infinite shear rate viscosity impacts are invoiced in the modeling. The heat and mass transport characteristics are explored by employing the effects of a magnetic field, thermal nonlinear radiation and buoyancy effects. Rudimentary governing partial differential equations (PDEs) are represented and are transformed into ordinary differential equations by the use of similarity transformation. The nonlinear ordinary differential equations (ODEs), along with the boundary conditions, are resolved with the aid of a Runge-Kutta-Fehlberg scheme (RKFS) based on the shooting technique.

Findings

The impact of sundry parameters like the viscosity ratio parameter (β*), nonlinear convection parameters due to temperature and concentration (βT, βC), mixed convection parameter (α), Hartmann number (M2), Weissenberg number (We), nonlinear radiation parameter (NR), and the Prandtl number (Pr) on the velocity, temperature and the concentration distributions are examined. Furthermore, the impacts of important variables on the skin friction, Nusselt number and the Sherwood number have been scrutinized through tables and graphical plots.

Originality/value

The velocity distribution is suppressed by greater values of the Hartmann number. The velocity components in the tangential and axial directions of the fluid are raised with the viscosity ratio parameter and the tangential slip parameter, but these components are reduced with concentration to thermal buoyancy forces ratio and stretching sheet ratio.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 4 July 2016

Madhu Macha, Kishan Naikoti and Ali J Chamkha

The purpose of this paper is to analyze the mangnetohydrodynamic boundary layer flow of a viscous, incompressible and electrically conducting non-Newtonian nanofluid obeying…

Abstract

Purpose

The purpose of this paper is to analyze the mangnetohydrodynamic boundary layer flow of a viscous, incompressible and electrically conducting non-Newtonian nanofluid obeying power-law model over a non-linear stretching sheet under the influence of thermal radiation with heat source/sink.

Design/methodology/approach

The transverse magnetic field is applied normal to the sheet. The model used for the nanofluid incorporates the effects of Brownian motion with thermophoresis in the presence of thermal radiation. On this regard, thermophoresis effect on convective heat transfer on nanofluids are investigated simultaneously. The governing partial differential equations are reduced to ordinary differential equations by suitable similarity transformations which are solved numerically by variational finite element method.

Findings

The computations carried out for some values of the power-law index, magnetic parameter, radiation parameter, Brownian motion and thermophoresis. The effect of these parameters on the velocity, temperature and nanoparticle volume fraction distribution are presented graphically. The skin friction coefficient, Nusselt number and Sherwood number for various values of the flow parameters of the problem are also presented.

Originality/value

To the best of the authors’ knowledge, no investigations has been reported regarding the study of non-Newtonian nanofluids which obeying power-law model over a nonlinear stretching sheet. The principal aim of this paper is to study the boundary layer MHD flow of a non-Newtonian power-law model over a non-linear stretching sheet on a quotient viscous incompressible electrically conducting with a nanofluid.

Details

Engineering Computations, vol. 33 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 18 July 2019

Jawad Raza, Mushayydha Farooq, Fateh Mebarek-Oudina and B. Mahanthesh

The purpose of this paper is to examine the interaction effects of a transverse magnetic field and slip effects of Casson fluid with suspended nanoparticles over a nonlinear

Abstract

Purpose

The purpose of this paper is to examine the interaction effects of a transverse magnetic field and slip effects of Casson fluid with suspended nanoparticles over a nonlinear stretching surface. Mathematical modeling for the law of conservation of mass, momentum, heat and concentration of nanoparticles is executed.

Design/methodology/approach

Governing nonlinear partial differential equations are reduced into nonlinear ordinary differential equations and then shooting method is employed for its solution. The slope of the linear regression line of the data points is calculated to measure the rate of increase/decrease in the reduced Nusselt number.

Findings

The effects of magnetic parameter (0=M=4), Casson parameter (0.1=β<8), nonlinear stretching parameter (0=n=3) and porosity parameter (0=P=6) on axial velocity are shown graphically. Numerical results were compared with another numerical approach and an excellent agreement was observed. This study reveals the fact that the Brownian motion parameter and boundary layer thickness have a direct relationship with temperature. Also, Brownian motion and thermophoresis contribute to an increase in the thermal boundary layer thickness.

Originality/value

Despite the immense significance and repeated employment of non-Newtonian fluids in industry and science, no attempt has been made up till now to inspect the Casson nanofluid flow with a permeable nonlinear stretching surface.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 5 September 2016

Macha Madhu, Naikoti Kishan and A. Chamkha

The purpose of this paper is to study the boundary layer flow and heat transfer of a power-law non-Newtonian nanofluid over a non-linearly stretching sheet.

Abstract

Purpose

The purpose of this paper is to study the boundary layer flow and heat transfer of a power-law non-Newtonian nanofluid over a non-linearly stretching sheet.

Design/methodology/approach

The governing equations describing the problem are transformed into a nonlinear ordinary differential equations by suitable similarity transformations. The resulting equations for this investigation are solved numerically by using the variational finite element method.

Findings

It was found that the local Nusselt number increases by increasing the Prandtl number, stretching sheet parameter and decreases by increasing the power-law index, thermophoresis parameter and Lewis number. Increases in the stretching sheet parameter, Prandtl number and thermophoresis parameter decrease the local Sherwood number values. The effects of Brownian motion and Lewis number lead to increases in the local Sherwood number values.

Originality/value

The work is relatively original as very little work has been reported on non-Newtonian nanofluids.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 December 2019

Ankita Bisht and Rajesh Sharma

The purpose of this study is to provide a numerical investigation of Casson nanofluid along a vertical nonlinear stretching sheet with variable thermal conductivity and viscosity.

Abstract

Purpose

The purpose of this study is to provide a numerical investigation of Casson nanofluid along a vertical nonlinear stretching sheet with variable thermal conductivity and viscosity.

Design/methodology/approach

The boundary-layer equations are presented in the dimensionless form using proper non-similar transformations. The subsequent non-dimensional nonlinear partial differential equations are solved using the implicit finite difference technique. To linearize the nonlinear terms present in these equations, the quasilinearization technique is used.

Findings

The investigation showed graphically the temperature, velocity and nanoparticle volume fraction for particular included physical parameters. It is observed that the velocity profile decreases with an increase in the values of Casson fluid parameter while increases with an increase in the viscosity variation parameter. The temperature profile enhances for large values of velocity variation parameter and thermal conductivity parameter while it reduces for large values of thermal buoyancy parameter. Further, the Nusselt number and skin-friction coefficient are introduced which are helpful in determining the physical aspects of Casson nanofluid flow.

Practical implications

The immediate control of heat transfer in the industrial system is crucial because of increasing energy prices. Recently, nanotechnology is proposed to control the heat transfer phenomenon. Ongoing research in complex nanofluid has been fruitful in various applications such as solar thermal collectors, nuclear reactors, electronic equipment and diesel–electric conductor. A reasonable amount of nanoparticle when added to the base fluid in solar thermal collectors serves to deeper absorption of incident radiation, and hence it upgrades the efficiency of the solar thermal collectors.

Originality/value

The non-similar solution of Casson nanofluid due to a vertical nonlinear stretching sheet with variable viscosity and thermal conductivity is discussed in this work.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 23 November 2018

Subrata Das, Hiranmoy Mondal, Prabir Kumar Kundu and Precious Sibanda

The focus of the paper is only on the contributions toward the use of entropy generation of non-Newtonian Casson fluid over an exponential stretching sheet. The purpose of this…

Abstract

Purpose

The focus of the paper is only on the contributions toward the use of entropy generation of non-Newtonian Casson fluid over an exponential stretching sheet. The purpose of this paper is to investigate the entropy generation and homogeneous–heterogeneous reaction. Velocity and thermal slips are considered instead of no-slip conditions at the boundary.

Design/methodology/approach

Basic equations in form of partial differential equations are converted into a system of ordinary differential equations and then solved using the spectral quasi-linearization method (SQLM).

Findings

The validity of the model is established using error analysis. Variation of the velocity, temperature, concentration profiles and entropy generation against some of the governing parameters are presented graphically. It is to be noted that the increase in entropy generation due to increase in heterogeneous reaction parameter is due to the increase in heat transfer irreversibility. It is further noted that the Bejan number decreases with Brinkman number because increase in Brinkman number reduces the total entropy generation.

Originality/value

This paper acquires realistic numerical explanations for rapidly convergent temperature and concentration profiles using the SQLM. Convergence of the numerical solutions was monitored using the residual error of the PDEs. The resulting equations are then integrated using the SQLM. The influence of emergent flow, heat and mass transfer parameters effects are shown graphically.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of 677