Search results

1 – 10 of 959
Article
Publication date: 22 July 2024

Haoqiang Sun, Haozhe Xu, Jing Wu, Shaolong Sun and Shouyang Wang

The purpose of this paper is to study the importance of image data in hotel selection-recommendation using different types of cognitive features and to explore whether there are…

Abstract

Purpose

The purpose of this paper is to study the importance of image data in hotel selection-recommendation using different types of cognitive features and to explore whether there are reinforcing effects among these cognitive features.

Design/methodology/approach

This study represents user-generated images “cognitive” in a knowledge graph through multidimensional (shallow, middle and deep) analysis. This approach highlights the clustering of hotel destination imagery.

Findings

This study develops a novel hotel selection-recommendation model based on image sentiment and attribute representation within the construction of a knowledge graph. Furthermore, the experimental results show an enhanced effect between different types of cognitive features and hotel selection-recommendation.

Practical implications

This study enhances hotel recommendation accuracy and user satisfaction by incorporating cognitive and emotional image attributes into knowledge graphs using advanced machine learning and computer vision techniques.

Social implications

This study advances the understanding of user-generated images’ impact on hotel selection, helping users make better decisions and enabling marketers to understand users’ preferences and trends.

Originality/value

This research is one of the first to propose a new method for exploring the cognitive dimensions of hotel image data. Furthermore, multi-dimensional cognitive features can effectively enhance the selection-recommendation process, and the authors have proposed a novel hotel selection-recommendation model.

Details

International Journal of Contemporary Hospitality Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0959-6119

Keywords

Article
Publication date: 21 May 2024

Sakshi Vishnoi and Jinil Persis

Managing weeds and pests in cropland is one of the major concerns in agriculture that greatly affects the quantity and quality of the produce. While the success of preventing…

Abstract

Purpose

Managing weeds and pests in cropland is one of the major concerns in agriculture that greatly affects the quantity and quality of the produce. While the success of preventing potential weeds and pests is not guaranteed, early detection and diagnosis help manage them effectively to ensure crops’ growth and health

Design/methodology/approach

We propose a diagnostic framework for crop management with automatic weed and pest detection and identification in maize crops using residual neural networks. We train two models, one for weed detection with a labeled image dataset of maize and commonly occurring weed plants, and another for leaf disease detection using a labeled image dataset of healthy and infected maize leaves. The global and local explanations of image classification are obtained and presented

Findings

Weed and disease detection and identification can be accurately performed using deep-learning neural networks. Weed detection is accurate up to 97%, and disease detection up to 95% is made on average and the results are presented. Further, using this crop management system, we can detect the presence of weeds and pests in the maize crop early, and the annual yield of the maize crop can potentially increase by 90% theoretically with suitable control actions

Practical implications

The proposed diagnostic models can be further used on farms to monitor the health of maize crops. Images obtained from drones and robots can be fed to these models, which can then automatically detect and identify weed and disease attacks on maize farms. This offers early diagnosis, which enables necessary treatment and control of crops at the early stages without affecting the yield of the maize crop

Social implications

The proposed crop management framework allows treatment and control of weeds and pests only in the affected regions of the farms and hence minimizes the use of harmful pesticides and herbicides and their related health effects on consumers and farmers.

Originality/value

This study presents an integrated weed and disease diagnostic framework, which is scarcely reported in the literature

Details

International Journal of Productivity and Performance Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1741-0401

Keywords

Article
Publication date: 19 January 2024

Pragati Agarwal, Sunita Kumari Malhotra and Sanjeev Swami

The COVID-19 pandemic has brought unprecedented disruptions to global supply chains, compelling organizations to reevaluate their strategies for resilience and adaptability. In…

Abstract

Purpose

The COVID-19 pandemic has brought unprecedented disruptions to global supply chains, compelling organizations to reevaluate their strategies for resilience and adaptability. In response, smart technologies (ST) have emerged as integral tools in post-pandemic supply chain management (SCM). This study aims to conduct an exploratory systematic literature review to comprehensively examine the evolving landscape of smart technology adoption in the context of SCM post-pandemic.

Design/methodology/approach

A systematic literature review has been conducted to examine the potential research contribution or directions in the field of ST and SCM. In total, 240 articles were shortlisted from the SCOPUS database in the chosen field of research. Bibliometric analysis was conducted by using VOSviewer to investigate the research trends in the area of SCM.

Findings

The review identifies key themes and trends, including supply chain resilience, digital transformation, enhanced visibility, predictive analytics and sustainability considerations. It explores the role of ST in fostering agility, transparency and risk mitigation within supply chains. Furthermore, eight clusters were identified to generate several thematic topics of ST in SCM. The results have evidenced a strong gap related to Industry 5.0 approaches for the supply chain field. A total of 240 publications, including journal articles, have been found in the literature. A total of 37 words, which were grouped in 8 clusters, have been identified in the data analysis.

Research limitations/implications

By synthesizing the current state of literature, this study provides valuable insights for practitioners, policymakers and researchers seeking to navigate the complexities of post-pandemic SCM in an increasingly digitized and interconnected world. The findings highlight the transformative potential of ST and offer a roadmap for further exploration in this critical domain.

Originality/value

In this paper, the development path of the field of ST in SCM during the pandemic and the research constructs are presented and potential research directions are based on the bibliometric method.

Details

Journal of Science and Technology Policy Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2053-4620

Keywords

Article
Publication date: 23 September 2024

FaGuang Jiang, Kebing Chen, Yang Chen and Cheng Tian

In response to the challenges posed by the conventional manual flange docking method in the LNG (Liquefied Natural Gas) loading process, such as low positioning accuracy…

Abstract

Purpose

In response to the challenges posed by the conventional manual flange docking method in the LNG (Liquefied Natural Gas) loading process, such as low positioning accuracy, constraints on production efficiency and safety hazards, this study analyzed the LNG five-axis loading arm’s main functions and structural characteristics.

Design/methodology/approach

An automated solution for the joints of the LNG loading arm was designed. The forward kinematic model of the LNG loading arm was established using the Denavit–Hartenberg (D-H) parameter method, and its workspace was analyzed. The Newton–Raphson iteration method was employed to solve the inverse kinematics of the LNG loading arm, facilitating trajectory planning. The relationship between the target position and the joint variables was established to verify the stability of the arm’s motion. Flange center identification was achieved using the Hough transform function. Based on the ROS platform, combined with Gazebo and Rviz, an experimental simulation of automatic docking of the LNG loading arm was conducted.

Findings

The docking errors in the XYZ directions were all less than 0.8 mm, meeting the required docking accuracy. Moreover, the motion performance of the loading arm during docking was smooth and free of abrupt changes, validating its capability to accomplish the automatic docking task.

Originality/value

The proposed trajectory planning and automatic docking scheme can be used for the rapid filling of LNG filling arms and LNG tankers to improve the efficiency of LNG transportation. In guiding the docking, the proposed automatic docking scheme is an accurate and efficient way to improve safety.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 20 February 2024

Li Chen, Dirk Ifenthaler, Jane Yin-Kim Yau and Wenting Sun

The study aims to identify the status quo of artificial intelligence in entrepreneurship education with a view to identifying potential research gaps, especially in the adoption…

3905

Abstract

Purpose

The study aims to identify the status quo of artificial intelligence in entrepreneurship education with a view to identifying potential research gaps, especially in the adoption of certain intelligent technologies and pedagogical designs applied in this domain.

Design/methodology/approach

A scoping review was conducted using six inclusive and exclusive criteria agreed upon by the author team. The collected studies, which focused on the adoption of AI in entrepreneurship education, were analysed by the team with regards to various aspects including the definition of intelligent technology, research question, educational purpose, research method, sample size, research quality and publication. The results of this analysis were presented in tables and figures.

Findings

Educators introduced big data and algorithms of machine learning in entrepreneurship education. Big data analytics use multimodal data to improve the effectiveness of entrepreneurship education and spot entrepreneurial opportunities. Entrepreneurial analytics analysis entrepreneurial projects with low costs and high effectiveness. Machine learning releases educators’ burdens and improves the accuracy of the assessment. However, AI in entrepreneurship education needs more sophisticated pedagogical designs in diagnosis, prediction, intervention, prevention and recommendation, combined with specific entrepreneurial learning content and entrepreneurial procedure, obeying entrepreneurial pedagogy.

Originality/value

This study holds significant implications as it can shift the focus of entrepreneurs and educators towards the educational potential of artificial intelligence, prompting them to consider the ways in which it can be used effectively. By providing valuable insights, the study can stimulate further research and exploration, potentially opening up new avenues for the application of artificial intelligence in entrepreneurship education.

Details

Education + Training, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0040-0912

Keywords

Article
Publication date: 22 April 2024

Deval Ajmera, Manjeet Kharub, Aparna Krishna and Himanshu Gupta

The pressing issues of climate change and environmental degradation call for a reevaluation of how we approach economic activities. Both leaders and corporations are now shifting…

Abstract

Purpose

The pressing issues of climate change and environmental degradation call for a reevaluation of how we approach economic activities. Both leaders and corporations are now shifting their focus, toward adopting practices and embracing the concept of circular economy (CE). Within this context, the Food and Beverage (F&B) sector, which significantly contributes to greenhouse gas (GHG) emissions, holds the potential for undergoing transformations. This study aims to explore the role that Artificial Intelligence (AI) can play in facilitating the adoption of CE principles, within the F&B sector.

Design/methodology/approach

This research employs the Best Worst Method, a technique in multi-criteria decision-making. It focuses on identifying and ranking the challenges in implementing AI-driven CE in the F&B sector, with expert insights enhancing the ranking’s credibility and precision.

Findings

The study reveals and prioritizes barriers to AI-supported CE in the F&B sector and offers actionable insights. It also outlines strategies to overcome these barriers, providing a targeted roadmap for businesses seeking sustainable practices.

Social implications

This research is socially significant as it supports the F&B industry’s shift to sustainable practices. It identifies key barriers and solutions, contributing to global climate change mitigation and sustainable development.

Originality/value

The research addresses a gap in literature at the intersection of AI and CE in the F&B sector. It introduces a system to rank challenges and strategies, offering distinct insights for academia and industry stakeholders.

Details

The International Journal of Logistics Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0957-4093

Keywords

Article
Publication date: 31 May 2024

Monojit Das, V.N.A. Naikan and Subhash Chandra Panja

The aim of this paper is to review the literature on the prediction of cutting tool life. Tool life is typically estimated by predicting the time to reach the threshold flank wear…

Abstract

Purpose

The aim of this paper is to review the literature on the prediction of cutting tool life. Tool life is typically estimated by predicting the time to reach the threshold flank wear width. The cutting tool is a crucial component in any machining process, and its failure affects the manufacturing process adversely. The prediction of cutting tool life by considering several factors that affect tool life is crucial to managing quality, cost, availability and waste in machining processes.

Design/methodology/approach

This study has undertaken the critical analysis and summarisation of various techniques used in the literature for predicting the life or remaining useful life (RUL) of the cutting tool through monitoring the tool wear, primarily flank wear. The experimental setups that comprise diversified machining processes, including turning, milling, drilling, boring and slotting, are covered in this review.

Findings

Cutting tool life is a stochastic variable. Tool failure depends on various factors, including the type and material of the cutting tool, work material, cutting conditions and machine tool. Thus, the life of the cutting tool for a particular experimental setup must be modelled by considering the cutting parameters.

Originality/value

This submission discusses tool life prediction comprehensively, from monitoring tool wear, primarily flank wear, to modelling tool life, and this type of comprehensive review on cutting tool life prediction has not been reported in the literature till now. The future suggestions provided in this review are expected to provide avenues to solve the unexplored challenges in this field.

Details

International Journal of Quality & Reliability Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0265-671X

Keywords

Open Access
Article
Publication date: 22 August 2023

Mahesh Babu Purushothaman and Kasun Moolika Gedara

This pragmatic research paper aims to unravel the smart vision-based method (SVBM), an AI program to correlate the computer vision (recorded and live videos using mobile and…

1744

Abstract

Purpose

This pragmatic research paper aims to unravel the smart vision-based method (SVBM), an AI program to correlate the computer vision (recorded and live videos using mobile and embedded cameras) that aids in manual lifting human pose deduction, analysis and training in the construction sector.

Design/methodology/approach

Using a pragmatic approach combined with the literature review, this study discusses the SVBM. The research method includes a literature review followed by a pragmatic approach and lab validation of the acquired data. Adopting the practical approach, the authors of this article developed an SVBM, an AI program to correlate computer vision (recorded and live videos using mobile and embedded cameras).

Findings

Results show that SVBM observes the relevant events without additional attachments to the human body and compares them with the standard axis to identify abnormal postures using mobile and other cameras. Angles of critical nodal points are projected through human pose detection and calculating body part movement angles using a novel software program and mobile application. The SVBM demonstrates its ability to data capture and analysis in real-time and offline using videos recorded earlier and is validated for program coding and results repeatability.

Research limitations/implications

Literature review methodology limitations include not keeping in phase with the most updated field knowledge. This limitation is offset by choosing the range for literature review within the last two decades. This literature review may not have captured all published articles because the restriction of database access and search was based only on English. Also, the authors may have omitted fruitful articles hiding in a less popular journal. These limitations are acknowledged. The critical limitation is that the trust, privacy and psychological issues are not addressed in SVBM, which is recognised. However, the benefits of SVBM naturally offset this limitation to being adopted practically.

Practical implications

The theoretical and practical implications include customised and individualistic prediction and preventing most posture-related hazardous behaviours before a critical injury happens. The theoretical implications include mimicking the human pose and lab-based analysis without attaching sensors that naturally alter the working poses. SVBM would help researchers develop more accurate data and theoretical models close to actuals.

Social implications

By using SVBM, the possibility of early deduction and prevention of musculoskeletal disorders is high; the social implications include the benefits of being a healthier society and health concerned construction sector.

Originality/value

Human pose detection, especially joint angle calculation in a work environment, is crucial to early deduction of muscoloskeletal disorders. Conventional digital technology-based methods to detect pose flaws focus on location information from wearables and laboratory-controlled motion sensors. For the first time, this paper presents novel computer vision (recorded and live videos using mobile and embedded cameras) and digital image-related deep learning methods without attachment to the human body for manual handling pose deduction and analysis of angles, neckline and torso line in an actual construction work environment.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 12 October 2023

Xiaoyu Liu, Feng Xu, Zhipeng Zhang and Kaiyu Sun

Fall accidents can cause casualties and economic losses in the construction industry. Fall portents, such as loss of balance (LOB) and sudden sways, can result in fatal, nonfatal…

Abstract

Purpose

Fall accidents can cause casualties and economic losses in the construction industry. Fall portents, such as loss of balance (LOB) and sudden sways, can result in fatal, nonfatal or attempted fall accidents. All of them are worthy of studying to take measures to prevent future accidents. Detecting fall portents can proactively and comprehensively help managers assess the risk to workers as well as in the construction environment and further prevent fall accidents.

Design/methodology/approach

This study focused on the postures of workers and aimed to directly detect fall portents using a computer vision (CV)-based noncontact approach. Firstly, a joint coordinate matrix generated from a three-dimensional pose estimation model is employed, and then the matrix is preprocessed by principal component analysis, K-means and pre-experiments. Finally, a modified fusion K-nearest neighbor-based machine learning model is built to fuse information from the x, y and z axes and output the worker's pose status into three stages.

Findings

The proposed model can output the worker's pose status into three stages (steady–unsteady–fallen) and provide corresponding confidence probabilities for each category. Experiments conducted to evaluate the approach show that the model accuracy reaches 85.02% with threshold-based postprocessing. The proposed fall-portent detection approach can extract the fall risk of workers in the both pre- and post-event phases based on noncontact approach.

Research limitations/implications

First, three-dimensional (3D) pose estimation needs sufficient information, which means it may not perform well when applied in complicated environments or when the shooting distance is extremely large. Second, solely focusing on fall-related factors may not be comprehensive enough. Future studies can incorporate the results of this research as an indicator into the risk assessment system to achieve a more comprehensive and accurate evaluation of worker and site risk.

Practical implications

The proposed machine learning model determines whether the worker is in a status of steady, unsteady or fallen using a CV-based approach. From the perspective of construction management, when detecting fall-related actions on construction sites, the noncontact approach based on CV has irreplaceable advantages of no interruption to workers and low cost. It can make use of the surveillance cameras on construction sites to recognize both preceding events and happened accidents. The detection of fall portents can help worker risk assessment and safety management.

Originality/value

Existing studies using sensor-based approaches are high-cost and invasive for construction workers, and others using CV-based approaches either oversimplify by binary classification of the non-entire fall process or indirectly achieve fall-portent detection. Instead, this study aims to detect fall portents directly by worker's posture and divide the entire fall process into three stages using a CV-based noncontact approach. It can help managers carry out more comprehensive risk assessment and develop preventive measures.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 9 September 2024

Nilesh Kumar and Jatinder Kumar

The purpose of this paper is to investigate the surface integrity features, including surface roughness (SR), recast layer (RL), material migration, topography and wire wear…

Abstract

Purpose

The purpose of this paper is to investigate the surface integrity features, including surface roughness (SR), recast layer (RL), material migration, topography and wire wear pattern in rough and trim-cut wire electric discharge machine (WEDM) of hybrid composite (Al6061-90%/SiC-2.5%/TiB2-7.5%).

Design/methodology/approach

Effects of four important factors, namely, rough-cut history (RCH), pulse on time (Ton), peak current (IP) and wire offset (WO) have been assessed on the responses of interest for trim-cut WEDM. Box–Behnken design (RSM) was used to formulate the experimentation plan. Quantitative indices of surface integrity, namely, SR and RL, and selected samples have been investigated for qualitative analysis, namely, surface topography, material migration and wire wear pattern.

Findings

Ton and IP are found to be most significant, whereas RCH and WO are found insignificant for SR. Ton and WO were found to be the most significant factors affecting RL. After trim cut, an RL of thickness 8.26 µm is observed if the initial rough cut has been accomplished at high discharge energy setting. Whereas the best value of RL thickness, i.e. 5.36 µm, can be realized with low level of RCH. A significant decrease in the presence of foreign materials is recorded, indicating its strong correlation with the discharge energy used during machining.

Originality/value

Investigation on surface integrity features for machining of hybrid composite through rough and trim-cut WEDM has been reported by only a limited number of researchers in the past. This study is attempted at fulfilling few vital gaps by addressing the issues such as evaluation of the efficacy of trim cutting under different discharge energy conditions (using RCH), analysis of wire wear pattern in both rough and trim-cut modes and investigation of the wire breakage phenomenon during machining.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 959