Search results

1 – 10 of 192
Book part
Publication date: 21 May 2024

Muhammad Shujaat Mubarik and Sharfuddin Ahmed Khan

This chapter investigates the potential of integrating multiple criteria decision-making (MCDM) techniques with decision support systems of digital supply chain management (DSCM…

Abstract

This chapter investigates the potential of integrating multiple criteria decision-making (MCDM) techniques with decision support systems of digital supply chain management (DSCM) to achieve optimal outcomes. Digital supply chain (DSC) employs digital technologies (DTs) such as artificial intelligence (AI), Internet of Things (IoT), and big data analytics to provide extensive datasets and valuable insights pertaining to supply chain operations. MCDM techniques employ these realizations to facilitate informed decision-making through the assessment of multiple competing criteria. Usually MCDM approaches are used in the academic research with comparatively lesser application in industry. We argue that MCDM methodologies can play an instrumental role in DSCM, specifically in the areas of supplier selection, demand forecasting, and inventory management. Nevertheless, the integration of MCDM like AHP, ANP, DEMATEL, etc., with decision support systems presents several challenges, including concerns regarding the quality of data and the intricate task of assigning weights to various factors.

Details

The Theory, Methods and Application of Managing Digital Supply Chains
Type: Book
ISBN: 978-1-80455-968-0

Keywords

Article
Publication date: 19 February 2024

Anwesa Kar and Rajiv Nandan Rai

The concept of sustainable product design (SPD) is gaining significant attention in recent research. However, due to inherent uncertainties associated with new product development…

Abstract

Purpose

The concept of sustainable product design (SPD) is gaining significant attention in recent research. However, due to inherent uncertainties associated with new product development and incorporation of multiple qualitative and quantitative criteria; SPD is a complex and challenging task. The purpose of this paper is to introduce a novel approach by integrating quality function deployment (QFD), multi-criteria decision making (MCDM) technique and Six Sigma evaluation for facilitating SPD in the context of Industry 4.0.

Design/methodology/approach

The customer requirements are evaluated through the neutrosophic-decision-making trial and evaluation laboratory-analytic network process (DEMATEL-ANP)-based approach followed by utilizing QFD matrix to estimate the weights of the engineering characteristics (EC). The Six Sigma method is then employed to evaluate the alternatives’ design based on the ECs’ values.

Findings

The effectiveness of the suggested approach is illustrated through an example. The result indicates that utilization of the neutrosophic MCDM technique with integration of Six Sigma methodology provides a simple, effective and computationally inexpensive method for SPD.

Practical implications

The proposed approach is helpful in upstream evaluation of the product design with limited experimental/numerical data, maintaining a strong competitive position in the market and enhancing customer satisfaction.

Originality/value

This work provides a novel approach to objectively quantify performance of SPD under the paradigm of Industry 4.0 using the integration of QFD-based hybrid MCDM with Six Sigma method.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 4 December 2023

Ved Prabha Toshniwal, Rakesh Jain, Gunjan Soni, Sachin Kumar Mangla and Sandeep Narula

This study is centered on the identification of the most appropriate Technology Adoption (TA) model for investigating the adoption of Industry 4.0 technologies within…

Abstract

Purpose

This study is centered on the identification of the most appropriate Technology Adoption (TA) model for investigating the adoption of Industry 4.0 technologies within pharmaceutical and related enterprises. The aim is to facilitate a smooth transition to advanced technologies while concurrently achieving environmental sustainability.

Design/methodology/approach

Selection of a suitable TA theory is carried out using a hybrid multi-criteria decision-making (MCDM) approach incorporating PIvot Pairwise RElative Criteria Importance Assessment (PIPRECIA) and Fuzzy Measurement of alternatives and ranking according to Compromise solution (F-MARCOS) methods. A group of three experts is formulated for the ranking of criteria and alternatives based on those criteria.

Findings

The results indicate that out of all six TA models considered unified theory of acceptance and use of technology (UTAUT) model gets the highest utility function value, followed by the technical adoption model (TAM). Further, sensitivity analysis is conducted to confirm the validity of the MCDM model employed.

Research limitations/implications

Challenging times like COVID-19 pointed out the importance of technology in the pharmaceutical and healthcare sectors. TA studies in this area can help in the identification of critical factors that can assist pharmaceutical firms in their efforts to embrace emerging technologies, enhance their outputs and increase their efficiency.

Originality/value

The novelty of this research lies in the fact that the utilization of a TA theory prior to its implementation has not been witnessed in existing scholarly literature. The utilization of a TA theory, specifically within the pharmaceutical industry, can assist enterprises in directing their attention toward pertinent factors when contemplating the implementation of emerging technologies and achieving sustainable development.

Details

Management of Environmental Quality: An International Journal, vol. 35 no. 3
Type: Research Article
ISSN: 1477-7835

Keywords

Article
Publication date: 28 July 2022

Ashis Mitra

Cotton fibre lots are graded and selected for yarn spinning based on their quality value which is a function of certain fibre properties. Cotton grading and selection has created…

Abstract

Purpose

Cotton fibre lots are graded and selected for yarn spinning based on their quality value which is a function of certain fibre properties. Cotton grading and selection has created a domain of emerging interest among the researchers. Several researchers have addressed the said issue using a few exponents of multi-criteria decision-making (MCDM) technique. The purpose of this study is to demonstrate a cotton selection problem using a recently developed measurement of alternatives and ranking according to compromise solution (MARCOS) method which can handle almost any decision problem involving a finite number of alternatives and multiple conflicting decision criteria.

Design/methodology/approach

The MARCOS method of the MCDM technique was deployed in this study to rank 17 cotton fibre lots based on their quality values. Six apposite fibre properties, namely, fibre bundle strength, elongation, fineness, upper half mean length, uniformity index and short fibre content are considered as the six decision criteria assigning weights previously determined by an earlier researcher using analytic hierarchy process.

Findings

Among the 17 alternatives, C9 secured rank 1 (the best lot) with the highest utility function (0.704) and C7 occupied rank 17 (the worst lot) with the lowest utility function (0.596). Ranking given by MARCOS method showed high degree of congruence with the earlier approaches, as evidenced by high rank correlation coefficients (Rs > 0.814). During sensitivity analyses, no occurrence of rank reversal is observed. The correlations between the quality value-based ranking and the yarn tenacity-based rankings are better than many of the traditional methods. The results can be improved further by adopting other efficient method of weighting the criteria.

Practical implications

The properties of raw cotton have significant impact on the quality of final yarn. Compared to the traditional methods, MCDM is reported as the most viable solution in which fibre parameters are given their due importance while formulating a single index known as quality value. The present study demonstrates the application of a recently developed exponent of MCDM in the name of MARCOS for the first time to address a cotton fibre selection problem for textile spinning mills. The same approach can also be extended to solve other decision problems of the textile industry, in general.

Originality/value

Novelty of the present study lies in the fact that the MARCOS is a very recently developed MCDM method, and this is a maiden application of the MARCOS method in the domain of textile, in general, and cotton industry, in particular. The approach is very simple, highly effective and quite flexible in terms of number of alternatives and decision criteria, although highly robust and stable.

Details

Research Journal of Textile and Apparel, vol. 28 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 2 April 2024

Paulo Alberto Sampaio Santos, Breno Cortez and Michele Tereza Marques Carvalho

Present study aimed to integrate Geographic Information Systems (GIS) and Building Information Modeling (BIM) in conjunction with multicriteria decision-making (MCDM) to enhance…

Abstract

Purpose

Present study aimed to integrate Geographic Information Systems (GIS) and Building Information Modeling (BIM) in conjunction with multicriteria decision-making (MCDM) to enhance infrastructure investment planning.

Design/methodology/approach

This analysis combines GIS databases with BIM simulations for a novel highway project. Around 150 potential alternatives were simulated, narrowed to 25 more effective routes and 3 options underwent in-depth analysis using PROMETHEE method for decision-making, based on environmental, cost and safety criteria, allowing for comprehensive cross-perspective comparisons.

Findings

A comprehensive framework proposed was validated through a case study. Demonstrating its adaptability with customizable parameters. It aids decision-making, cost estimation, environmental impact analysis and outcome prediction. Considering these critical factors, this study holds the potential to advance new techniques for assessment and planning railways, power lines, gas and water.

Research limitations/implications

The study acknowledges limitations in GIS data quality, particularly in underdeveloped areas or regions with limited technology access. It also overlooks other pertinent variables, like social, economic, political and cultural issues. Thus, conclusions from these simulations may not entirely represent reality or diverse potential scenarios.

Practical implications

The proposed method automates decision-making, reducing subjectivity, aids in selecting effective alternatives and considers environmental criteria to mitigate negative impacts. Additionally, it minimizes costs and risks while demonstrating adaptability for assessing diverse infrastructures.

Originality/value

By integrating GIS and BIM data to support a MCDM workflow, this study proposes to fill the existing research gap in decision-making prioritization and mitigate subjective biases.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 12 December 2023

Santonab Chakraborty, Rakesh D. Raut, T.M. Rofin and Shankar Chakraborty

Supplier selection along with continuous evaluation of their performance is a crucial activity in healthcare supply chain management for effective utilization of scarce resources…

Abstract

Purpose

Supplier selection along with continuous evaluation of their performance is a crucial activity in healthcare supply chain management for effective utilization of scarce resources while providing quality service at an affordable price, and minimizing chances of stock-out, avoiding serious consequences on the illness or fatality of the patients. Presence of both qualitative and quantitative evaluation criteria, set of potential suppliers and participation of different stakeholders with varying interest make healthcare supplier selection a challenging task which can be effectively solved using any of the multi-criteria decision making (MCDM) methods.

Design/methodology/approach

To deal with various qualitative criteria, like cost, quality, delivery performance, reliability, responsiveness and flexibility, this paper proposes integration of grey system theory with a newly developed MCDM tool, i.e. mixed aggregation by comprehensive normalization technique (MACONT) to identify the best performing supplier for pharmaceutical items in a healthcare unit from a pool of six competing alternatives based on the opinions of three healthcare professionals.

Findings

While assessing importance of the six evaluation criteria and performance of the alternative healthcare suppliers against those criteria using grey numbers, and exploring use of three normalization procedures and two aggregation operations of MACONT method, this integrated approach singles out S5 as the most compromised healthcare supplier for the considered problem. A sensitivity analysis of its ranking performance against varying values of both balance parameters and preference parameters also validates its solution accuracy and robustness.

Originality/value

This integrated approach can thus efficiently solve healthcare supplier selection problems based on qualitative evaluation criteria in uncertain group decision making environment. It can also be deployed to deal with other decision making problems in the healthcare sector, like supplier selection for healthcare devices, performance evaluation of healthcare units, ranking of physicians etc.

Details

Grey Systems: Theory and Application, vol. 14 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 9 April 2024

Ali Asghar Sadabadi, Fatemeh Mohamadi Etergeleh, Kiarash Fartash and Narges Shahi

The purpose of this paper is to investigate the social acceptance of renewable and non-renewable energies in Iran using the social acceptance pyramid.

Abstract

Purpose

The purpose of this paper is to investigate the social acceptance of renewable and non-renewable energies in Iran using the social acceptance pyramid.

Design/methodology/approach

Today, social acceptance is considered a very important phenomenon in the development, implementation and achievement of energy policy goals. Low acceptance will make it difficult to achieve energy development goals; therefore, social acceptance must be taken into account when making policy. Firstly, the model criteria, using data obtained from questionnaires, are weighted by the Shannon entropy method and, finally, four sources of fossil, nuclear, wind and solar energy were ranked by means of VIKOR, Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS).

Findings

The results show that, in Iran, the social acceptance criterion and trust sub-criterion are the most important criteria for energy acceptance. The results of the ranking of options based on multiple-criteria decision-making (MCDM) techniques show that, given Iran's specific energy requirements, social acceptance of fossil energy is higher than wind, solar and nuclear, and wind, solar and nuclear energy come later in the rankings.

Originality/value

This research contributes to the literature in two ways: Firstly, social acceptance is considered a very important phenomenon in the development, implementation and achievement of energy policy goals; thus social acceptance must be taken into account when making policy. The results of the ranking of options based on MCDM techniques show that, given Iran's specific energy requirements, social acceptance of fossil energy is higher than wind, solar and nuclear, and wind, solar and nuclear energy come later in the rankings. Also, the social acceptance criterion and trust sub-criterion are the most important criteria for energy acceptance in Iran.

Details

International Journal of Energy Sector Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 1 March 2023

Hossein Shakibaei, Mohammad Reza Farhadi-Ramin, Mohammad Alipour-Vaezi, Amir Aghsami and Masoud Rabbani

Every day, small and big incidents happen all over the world, and given the human, financial and spiritual damage they cause, proper planning should be sought to deal with them so…

Abstract

Purpose

Every day, small and big incidents happen all over the world, and given the human, financial and spiritual damage they cause, proper planning should be sought to deal with them so they can be appropriately managed in times of crisis. This study aims to examine humanitarian supply chain models.

Design/methodology/approach

A new model is developed to pursue the necessary relations in an optimal way that will minimize human, financial and moral losses. In this developed model, in order to optimize the problem and minimize the amount of human and financial losses, the following subjects have been applied: magnitude of the areas in which an accident may occur as obtained by multiple attribute decision-making methods, the distances between relief centers, the number of available rescuers, the number of rescuers required and the risk level of each patient which is determined using previous data and machine learning (ML) algorithms.

Findings

For this purpose, a case study in the east of Tehran has been conducted. According to the results obtained from the algorithms, problem modeling and case study, the accuracy of the proposed model is evaluated very well.

Originality/value

Obtaining each injured person's priority using ML techniques and each area's importance or risk level, besides developing a bi-objective mathematical model and using multiple attribute decision-making methods, make this study unique among very few studies that concern ML in the humanitarian supply chain. Moreover, the findings validate the results and the model's functionality very well.

Article
Publication date: 25 April 2024

Sukran Seker

Since conducting agile strategies provides sustainable passenger satisfaction and revenue by replacing applied policies with more profitable ones rapidly, the focus of this study…

Abstract

Purpose

Since conducting agile strategies provides sustainable passenger satisfaction and revenue by replacing applied policies with more profitable ones rapidly, the focus of this study is to evaluate agile attributes for managing low-cost carriers (LCCs) operations by means of resources and competences based on dynamic capabilities built on resource-based view (RBV) theory and to achieve sustainable competitive advantage in a volatile and dynamic air transport environment. LCCs in Turkey are also evaluated in this study since the competition among LCCs is high to gain market share and they can adapt quickly to all kinds of circumstances.

Design/methodology/approach

Two well-known Multi-Criteria Decision-Making Methods (MCDM) named as the Stepwise Weight Assessment Ratio Analysis (SWARA) and multi-attributive border approximation area comparison (MABAC) methods by employing Picture fuzzy sets (PiFS) are employed to determine weight of agile attributes and superiority of LCCs based on agile attributes in the market, respectively. To check the consistency and robustness of the results for the proposed approach, comparative and sensitivity analysis are performed at the end of the study.

Findings

While the ranking orders of agile attributes are Strategic Responsiveness (AG1), Financial Management (AG4), Quality (AG2), Digital integration (AG3) and Reliability (AG5), respectively, LCC2 is selected as the best agile airline company in Turkey with respect to agile attributes. SWARA and MABAC method based on PiFS is appropriate and effective method to evaluate agile attributes that has important reference value for the airline companies in aviation industry.

Practical implications

The findings of this study will support managers in the airline industry to conduct airline operations more flexibly and effectively to take sustainable competitive advantage in unexpected and dynamic environment.

Originality/value

To the author' best knowledge, this study is the first developed to identify the attributes necessary to increase agility in LCCs. Thus, as a systematic tool, a framework is developed for the implementation of agile attributes to achieve sustainable competitive advantage in the airline industry and presented a roadmap for airline managers to deal with crises and challenging situations by satisfying customer and increasing competitiveness.

Details

Management Decision, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0025-1747

Keywords

Article
Publication date: 9 April 2024

Gul Imamoglu, Ertugrul Ayyildiz, Nezir Aydin and Y. Ilker Topcu

Blood availability is critical for saving lives in various healthcare services. Ensuring blood availability can only be achieved through efficient management of the blood supply…

Abstract

Purpose

Blood availability is critical for saving lives in various healthcare services. Ensuring blood availability can only be achieved through efficient management of the blood supply chain (BSC). A key component of the BSC is bloodmobiles, which are responsible for a significant portion of blood donation collections. The most crucial factor affecting the efficacy of bloodmobiles is their location selection. Therefore, detailed decision analyses are essential for the location selection of bloodmobiles. This study proposes a comprehensive approach to bloodmobile location selection for resilient BSCs.

Design/methodology/approach

This study provides a novel integration of the spherical fuzzy analytical hierarchy process (SF-AHP) and spherical fuzzy complex proportional assessment (SF-COPRAS) methodologies. In this framework, the criteria are weighted using SF-AHP. The alternatives are then evaluated using SF-COPRAS, employing criteria weights obtained from SF-AHP without defuzzification.

Findings

The results show that supply conditions and resilience are the most important criteria for a bloodmobile location selection. Additionally, the validation analyses confirm the stability of the solution.

Practical implications

This study presents several managerial implications that can aid mid-level managers in the BSC during the decision-making process for bloodmobile location selection. The critical factors revealed, along with their importance in choosing bloodmobile locations, serve as a comprehensive guide. Additionally, the framework proposed in this study offers decision-makers (DMs) an effective method for ranking potential bloodmobile locations.

Originality/value

This study presents the first application of multi-criteria decision-making (MCDM) for bloodmobile location selection. In this manner, several aspects of bloodmobile location selection are considered for the first time in the existing literature. Furthermore, from the methodological aspect, this study provides a novel SF-AHP-integrated SF-COPRAS methodology.

Details

Journal of Enterprise Information Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1741-0398

Keywords

1 – 10 of 192