Search results

1 – 10 of 12
Article
Publication date: 26 October 2018

Luca G. Campana, Paolo Di Barba, Fabrizio Dughiero, Michele Forzan, Maria Evelina Mognaschi, Rudy Rizzo and Elisabetta Sieni

In electrochemotherapy, flexible electrodes, composed by an array of needles, are applied to human tissues to treat large surface tumors. The positioning of the needles in the…

Abstract

Purpose

In electrochemotherapy, flexible electrodes, composed by an array of needles, are applied to human tissues to treat large surface tumors. The positioning of the needles in the tissue depends on the surface curvature. The parallel needle case is preferred, as their relative inclinations strongly affect the actual distribution of electric field. Nevertheless, in some case, small inclinations are unavoidable. The purpose of this paper is to study the electric field distribution for non-parallel needles.

Design/methodology/approach

The effect of electrode position is evaluated systematically by means of numerical models and experiments on phantoms for two different angles (5° and 30°) and compared with the case of parallel needles. Potato model was used as phantom, as this tissue becomes dark after few hours from electroporation. The electroporation degree was gauged from the color changings on the potatoes.

Findings

The distribution of electric field in different needle configuration is found by means of finite element analysis (FEA) and experiments on potatoes. The electric field level of inclined needles was compared with parallel needle case. In particular, the electric field distribution in the case of inclined needles could be very different with respect to the one in the case of parallel needles. The degree of enhancement for different inclinations is visualized by potato color intensity. The FEA suggested that the needle parallelism has to be maintained as possible as if the tips are closer to each other, the electric field intensity could be different with respect to the one in the case of parallel needles.

Originality/value

This paper analyzes the effect of inclined electrodes considering also the non-linearity of tissues.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 38 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 16 June 2021

Mattia Mele, Giampaolo Campana and Gian Luca Monti

The amount of radiated energy is known to be a crucial parameter in powder-bed additive manufacturing (AM) processes. The role of irradiance in the multijet fusion (MJF) process…

Abstract

Purpose

The amount of radiated energy is known to be a crucial parameter in powder-bed additive manufacturing (AM) processes. The role of irradiance in the multijet fusion (MJF) process has not been addressed by any previous research, despite the key role of this process in the AM industry. The aim of this paper is to explore the relationship between irradiance and dimensional accuracy in MJF.

Design/methodology/approach

An experimental activity was carried out to map the relationship between irradiance and dimensional accuracy in the MJF transformation of polyamide 12. Two specimens were used to measure the dimensional accuracy on medium and small sizes. The experiment was run using six different levels of irradiance. For each, the crystallinity degree and part density were measured.

Findings

Irradiance was found to be directly proportional to part density and inversely proportional to crystallinity degree. Higher irradiance leads to an increase in the measured dimensions of parts. This highlights a predominant role of the crystallisation degree and uncontrolled peripherical sintering, in line with the previous literature on other powder-bed AM processes. The results demonstrate that different trends can be observed according to the range of sizes.

Details

Rapid Prototyping Journal, vol. 27 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 19 November 2020

Mattia Mele, Giampaolo Campana and Gian Luca Monti

Multi-jet fusion (MJF) process is based on a polymeric powder bed that is heated and irradiated by infra-red lamps. The layer under construction is jetted with inks to provide the…

Abstract

Purpose

Multi-jet fusion (MJF) process is based on a polymeric powder bed that is heated and irradiated by infra-red lamps. The layer under construction is jetted with inks to provide the desired heat management conditions for selective melting. Depending on several process variables, manufactured parts can exhibit lifting of the borders of the top surface of the shape under construction. This phenomenon is related to the capillarity effect. As a result, the top surface of MJF-manufactured parts can present a peculiar convex shape. This study aims to propose a solution that instead induces the capillarity effect outside of the part under construction.

Design/methodology/approach

A specific design is developed to avoid the capillarity effect in MJF. It is based on an analytical model that was previously developed by the authors to estimate the shape and extent of the capillary on top surfaces of benchmark components. The proposed methodology is established by the predicted calculation of maximum values of capillarity rise and length, and safety factors. A fin-shaped geometry is designed to avoid the capillarity effect. An experimental campaign is implemented to verify the effectiveness of the proposed solution. Prototypes are manufactured by an HP MultiJet 4200 in the original design and the so-called finned-riser design, by adding a well-dimensioned appendage on the top surface to shift the capillarity effect outside the border of the part under construction. Measurements are done by a CAM2 ScanArm contactless measuring system to achieve the real shape of top surfaces. Geomagic Control X software by 3D systems is used to evaluate the quality of measured surfaces in comparison with the expected geometry of the top plane of the benchmark.

Findings

The investigated approach involves adding an auxiliary finned-shape appendage, which acts similarly to the risers in foundry technology, to the top surface of the part that is being produced by MJF technology. The procedure and rules for determining the dimensions of the fin are established based on physical considerations and process modelling. The method is then applied to a prototype part, which is designed to highlight the effectiveness of the finned-riser design for improving the dimensional accuracy of the top surfaces of products manufactured by the MJF process. Experimental measurements of top surfaces of the original benchmark are compared to the same ones in the case of the finned-riser benchmark. Reported results are satisfactory, and the capillary effect occurred in the fins outside the border edges of the part. Further developments are planned to extend the proposed design.

Originality/value

MJF technology is attracting large interest from manufacturers to produce mass customised products. The quality of manufactured parts could be affected by peculiar defects related to process parameters. The present work aims to show a method to avoid the capillarity effect. It is based on an original analytical model developed by the authors and implemented successfully in the case of a benchmark geometry.

Details

Rapid Prototyping Journal, vol. 27 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 7 December 2022

Mattia Mele, Giampaolo Campana and Gian Luca Monti

The purpose of this paper is to develop a physical model able to predict the shape of the capillarity effect in multi-jet fusion when two facing edges mutually affect each other…

Abstract

Purpose

The purpose of this paper is to develop a physical model able to predict the shape of the capillarity effect in multi-jet fusion when two facing edges mutually affect each other. The work also aims at testing the consistency of such a model with experimental observations.

Design/methodology/approach

An analytical model of the phenomenon is developed considering the surface tension of the polymer melt adhering to the unfused powder. The general equilibrium equations are solved by imposing the boundary conditions corresponding to the case of two close facing edges, in which the shapes of the menisci are mutually influenced. The analytical model is validated through an experimental activity. Specifically, a set of parallelepipeds with variable width was manufactured using an HP Multi Jet Fusion 4200. The morphologies of capillarities were captured via three-dimensional scanning and compared with those predicted by the model.

Findings

The results of this study demonstrate that the average error to the experimental capillarity profile is lower than that obtained by existing methods. Particularly, considerable improvements are achieved as far as the maximum capillarity height is concerned. The manufactured specimens exhibit a change in slope near the edges, which is arguably attributable to coating powder and other effects not included in the analytical model.

Originality/value

The model presented in this study differs in hypotheses from previous methods in literature by assuming a null derivative of the capillarity shape in the central point of the meniscus. This allows for a more accurate prediction of the defect morphology in the case of close facing edges.

Details

Rapid Prototyping Journal, vol. 29 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 8 September 2021

Giampaolo Campana, Eckart Uhlmann, Mattia Mele, Luca Raffaelli, André Bergmann, Jaroslaw Kochan and Julian Polte

Support structures used in laser powder bed fusion are often difficult to clean from unsintered powder at the end of the process. This issue can be significantly reduced through a…

Abstract

Purpose

Support structures used in laser powder bed fusion are often difficult to clean from unsintered powder at the end of the process. This issue can be significantly reduced through a proper design of these auxiliary structures. This paper aims to investigate preliminary the airflow within differently oriented support structures and to provide design guidelines to enhance their cleanability, especially the depowdering of them.

Design/methodology/approach

This study investigates the cleanability of support structures in powder bed fusion technology. Digital models of cleaning operations were designed through computer-aided engineering systems. Simulations of the airflow running into the powder entrapped within the thin walls of auxiliary supports were implemented by computational fluid dynamics. This approach was applied to a set of randomly generated geometrical configurations to determine the air turbulence intensity depending on their design.

Findings

The results, which are based on the assumption that a relationship exists between turbulence and powder removal effectiveness, demonstrated that the maximum cleanability is obtainable through specific relative rotations between consecutive support structures. Furthermore, it was possible to highlight the considerable influence of the auxiliary structures next to the fluid inlet. These relevant findings establish optimal design rules for the cleanability of parts manufactured by powder bed fusion processes.

Originality/value

This study presents a preliminary investigation into the cleanability of support structures in laser powder bed fusion, which has not been addressed by previous literature. The results allow for a better understanding of the fluid dynamics during cleaning operations. New guidelines to enhance the cleanability of support structures are provided based on the results of simulations.

Details

Rapid Prototyping Journal, vol. 28 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 13 October 2020

Mattia Mele, Giampaolo Campana, Gregorio Pisaneschi and Gian Luca Monti

Multi jet fusion is an industrial additive manufacturing technology characterised by high building speed and considerable properties of the parts. The cooling phase represents a…

Abstract

Purpose

Multi jet fusion is an industrial additive manufacturing technology characterised by high building speed and considerable properties of the parts. The cooling phase represents a crucial step to determine productivity, since it can take up to 4.5 times the building time. The purpose of this paper is to investigate into effects of cooling rate on parts manufactured by multi jet fusion. Crystallinity, density, distortions and mechanical properties of specimens produced through an HP multi jet fusion 4200 are examined.

Design/methodology/approach

An experimental activity is carried out on specimens cooled down at three different rates. Properties of the parts are analysed by means of differential scanning calorimetry, optical microscopy, three-dimensional scanning and tensile testing.

Originality/value

The present work makes a contribution to the body of knowledge providing correlations between the cooling phase of multi jet fusion and part properties. These results can be used to choose the right balance between production time and product quality.

Details

Rapid Prototyping Journal, vol. 26 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Book part
Publication date: 23 May 2022

Arcelia Toledo López and Dora Lilia Guzmán Cruz

The purpose of this study was to explore the innovative and proactive practices adopted by subsistence businesses under the COVID-19 health contingency. Evidence of the current…

Abstract

The purpose of this study was to explore the innovative and proactive practices adopted by subsistence businesses under the COVID-19 health contingency. Evidence of the current situation and the contingency practices that businesses have implemented in dealing with the economic crisis caused by the COVID-19 pandemic was collected through a literature review of secondary information sources: bibliographic and hemerographic, as well as in-depth interviews with five owners of artisanal and agricultural subsistence businesses.

Faced with uncertainty, artisanal and agricultural subsistence businesses have adopted innovative and proactive survival practices. The closure of markets, the absence of tourism, the suspension of non-essential activities, the lack of mobility and transportation, and the closure of access in rural communities are some of the realities these businesses are experiencing. Subsistence businesses in marginalised areas are a long way from accessing information technologies for online sales and home deliveries, which are implemented by most businesses in urban areas. In contrast, they revert to ancestral marketing practices such as bartering and low prices to earn an income for family food. Despite the loss of over 50% of subsistence businesses in urban and semi-urban areas, online sales through social media and websites, socially responsible initiatives, along with government support programmes, have helped others stay in business.

Details

Research in Administrative Sciences Under COVID-19
Type: Book
ISBN: 978-1-80262-298-0

Keywords

Abstract

Details

Business Process Management Journal, vol. 25 no. 1
Type: Research Article
ISSN: 1463-7154

Open Access
Article
Publication date: 3 May 2024

Maria Cleofe Giorgino and Federico Barnabè

Drawing motivation from the greater exposure to uncertainty and condition changes that affect large projects due to their long lifecycle, this paper aims to investigate how the…

Abstract

Purpose

Drawing motivation from the greater exposure to uncertainty and condition changes that affect large projects due to their long lifecycle, this paper aims to investigate how the time factor affects the use of governance mechanisms to pursue the success of these projects.

Design/methodology/approach

To pursue its aim, the article applies the dichotomization between the hard and soft mechanisms of project governance to the analysis of a historical case study, whose findings are organized over the short, medium and long periods. The case selected is referred to the peculiar water system, made up of tunnels named “bottini,” that was in use in Siena (Italy) as the old aqueduct. Specifically, the study focuses on the project of expansion of this water system that was realized during the 14th century for the construction of the “Bottino maestro di Fontegaia.”

Findings

This article highlights the different relevance that, during the lifecycle of large projects, is assumed by hard and soft governance mechanisms, with the former having main relevance in a short and medium period, and the latter usually emerging in the medium period and, subsequently, playing a growing role for the project success in the long period.

Originality/value

The article contributes to the literature on large projects by providing novel insights about how the time factor impacts the governance of these projects. Furthermore, the case study, with its unique history, highlights the relevance of combining effectively the hard and the soft dimensions of project governance to pursue success.

Details

Journal of Management History, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1751-1348

Keywords

Article
Publication date: 20 June 2024

Yong Huang, Xiangfeng He, Zhiguang Lian and Zhirong Yang

This study explores the deep integration of digital technology and cultural heritage to promote the preservation and inheritance of cultural heritage. Focusing on Digital Cultural…

Abstract

Purpose

This study explores the deep integration of digital technology and cultural heritage to promote the preservation and inheritance of cultural heritage. Focusing on Digital Cultural Heritage (DCH), this research investigates its key role in activating theoretical research and practical applications in cultural heritage.

Design/methodology/approach

This study conducted an extensive bibliometric analysis utilizing VOSviewer and Bibliometrix visualization software to meticulously examine DCH research. Insights were gleaned from a dataset comprising 2,997 DCH-related publications harvested from the Web of Science database.

Findings

The bibliometric analysis reveals several notable findings: driven by active contributions from Italy, China, Spain, and the USA, the number of DCH publications shows a linear upward trend. Consiglio Nazionale delle Ricerche in Italy emerges as a prominent institution, while the Journal of Cultural Heritage stands out as the most influential journal in the DCH field. Scholars such as Remondino, Guidi, Barazzetti, and Carrozzino have significantly impacted DCH research. Furthermore, an in-depth analysis of keyword co-occurrence networks elucidates six major research trajectories in the DCH field, covering various aspects from cultural heritage digitization to digital humanities.

Practical implications

The study emphasizes the value of global knowledge exchange, interdisciplinary collaboration, innovative technology applications, and digital content provision practices in advancing DCH research.

Originality/value

By delving into the multifaceted landscape of DCH research, this study brings forth original insights into the escalating trends, pivotal contributors, and burgeoning research directions.

Details

Library Hi Tech, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0737-8831

Keywords

1 – 10 of 12