Search results

1 – 10 of over 1000
Article
Publication date: 26 March 2024

Keyu Chen, Beiyu You, Yanbo Zhang and Zhengyi Chen

Prefabricated building has been widely applied in the construction industry all over the world, which can significantly reduce labor consumption and improve construction…

Abstract

Purpose

Prefabricated building has been widely applied in the construction industry all over the world, which can significantly reduce labor consumption and improve construction efficiency compared with conventional approaches. During the construction of prefabricated buildings, the overall efficiency largely depends on the lifting sequence and path of each prefabricated component. To improve the efficiency and safety of the lifting process, this study proposes a framework for automatically optimizing the lifting path of prefabricated building components using building information modeling (BIM), improved 3D-A* and a physic-informed genetic algorithm (GA).

Design/methodology/approach

Firstly, the industry foundation class (IFC) schema for prefabricated buildings is established to enrich the semantic information of BIM. After extracting corresponding component attributes from BIM, the models of typical prefabricated components and their slings are simplified. Further, the slings and elements’ rotations are considered to build a safety bounding box. Secondly, an efficient 3D-A* is proposed for element path planning by integrating both safety factors and variable step size. Finally, an efficient GA is designed to obtain the optimal lifting sequence that satisfies physical constraints.

Findings

The proposed optimization framework is validated in a physics engine with a pilot project, which enables better understanding. The results show that the framework can intuitively and automatically generate the optimal lifting path for each type of prefabricated building component. Compared with traditional algorithms, the improved path planning algorithm significantly reduces the number of nodes computed by 91.48%, resulting in a notable decrease in search time by 75.68%.

Originality/value

In this study, a prefabricated component path planning framework based on the improved A* algorithm and GA is proposed for the first time. In addition, this study proposes a safety-bounding box that considers the effects of torsion and slinging of components during lifting. The semantic information of IFC for component lifting is enriched by taking into account lifting data such as binding positions, lifting methods, lifting angles and lifting offsets.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 13 February 2024

Ehab Samir Mohamed Mohamed Soliman

In the present study, a steel lifting lug is replaced with a composite (carbon fiber-reinforced epoxy [CFRP]) lifting lug made of a carbon/epoxy composite. The purpose of this…

34

Abstract

Purpose

In the present study, a steel lifting lug is replaced with a composite (carbon fiber-reinforced epoxy [CFRP]) lifting lug made of a carbon/epoxy composite. The purpose of this paper was to obtain a composite lifting lug with a higher level of strength that is capable of carrying loads without failure.

Design/methodology/approach

The vibration and static behaviors of steel and composite lifting lugs have been investigated using finite element analysis (FEA), ANSYS software. The main consideration in the design of the composite (CFRP) lifting lug was that the displacement of both steel and composite lugs was the same under the same load. Hence, by using the FEA displacement result of the steel lifting lug, the thickness of the composite lifting lug is determined using FEA.

Findings

Compared to the steel lifting lug, the composite (CFRP) lifting lug has much lower stresses and much higher natural frequencies. Static behavior was experienced by the composite lifting lug, showing a reduction in von Mises stress, third principal stress and XZ shear stress, respectively, by 48.4%, 34.6% and 89.8%, respectively, when compared with the steel lifting lug. A higher natural frequency of mode shape swaying in X (258.976√1,000 Hz) was experienced by the composite lifting lug when compared to the steel lifting lug (195.935√1,000 Hz). The safe strength of the design composite lifting lug has been proven by FEA results, which showed that the composite (CFRP) lifting lug has a higher factor of safety in all developed stresses than the steel lifting lug. According to von Mises stress, the factor of safety of the composite lifting lug is increased by 76% when compared to the steel lifting lug. The von Mises stress at the edge of the hole in the composite lifting lug is reduced from 23.763 MPa to 20.775 MPa when compared to the steel lifting lug.

Originality/value

This work presents the designed composite (CFRP) lifting lug, which will be able to carry loads with more safety than a steel one.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 27 February 2024

Jacques Abou Khalil, César Jiménez Navarro, Rami El Jeaid, Abderahmane Marouf, Rajaa El Akoury, Yannick Hoarau, Jean-François Rouchon and Marianna Braza

This study aims to investigate the morphing concepts able to manipulate the dynamics of the downstream unsteadiness in the separated shear layers and, in the wake, be able to…

Abstract

Purpose

This study aims to investigate the morphing concepts able to manipulate the dynamics of the downstream unsteadiness in the separated shear layers and, in the wake, be able to modify the upstream shock–boundary layer interaction (SBLI) around an A320 morphing prototype to control these instabilities, with emphasis to the attenuation or even suppression of the transonic buffet. The modification of the aerodynamic performances according to a large parametric study carried out at Reynolds number of 4.5 × 106, Mach number of 0.78 and various angles of attack in the range of (0, 2.4)° according to two morphing concepts (travelling waves and trailing edge vibration) are discussed, and the final benefits in aerodynamic performance increase are evaluated.

Design/methodology/approach

This article examines through high fidelity (Hi-Fi) numerical simulation the effects of the trailing edge (TE) actuation and of travelling waves along a specific area of the suction side starting from practically the most downstream position of the shock wave motion according to the buffet and extending up to nearly the TE. The present paper studies through spectral analysis the coherent structures development in the near wake and the comparison of the aerodynamic forces to the non-actuated case. Thus, the physical mechanisms of the morphing leading to the increase of the lift-to-drag ratio and the drag and noise sources reduction are identified.

Findings

This study investigates the influence of shear-layer and near-wake vortices on the SBLI around an A320 aerofoil and attenuation of the related instabilities thanks to novel morphing: travelling waves generated along the suction side and trailing-edge vibration. A drag reduction of 14% and a lift-to-drag increase in the order of 8% are obtained. The morphing has shown a lift increase in the range of (1.8, 2.5)% for angle of attack of 1.8° and 2.4°, where a significant lift increase of 7.7% is obtained for the angle of incidence of 0° with a drag reduction of 3.66% yielding an aerodynamic efficiency of 11.8%.

Originality/value

This paper presents results of morphing A320 aerofoil, with a chord of 70cm and subjected to two actuation kinds, original in the state of the art at M = 0.78 and Re = 4.5 million. These Hi-Fi simulations are rather rare; a majority of existing ones concern smaller dimensions. This study showed for the first time a modified buffet mode, displaying periodic high-lift “plateaus” interspersed by shorter lift-decrease intervals. Through trailing-edge vibration, this pattern is modified towards a sinusoidal-like buffet, with a considerable amplitude decrease. Lock-in of buffet frequency to the actuation is obtained, leading to this amplitude reduction and a drastic aerodynamic performance increase.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 23 October 2023

Shengxian Huang, Huihe Qiu and Ying Wang

Since most of the existing literature do not disclose the node coordinate data of its fixed-wing aircraft airfoil, in order to develop and obtain a practical and suitable…

Abstract

Purpose

Since most of the existing literature do not disclose the node coordinate data of its fixed-wing aircraft airfoil, in order to develop and obtain a practical and suitable deformation airfoil for fixed-wing micro air vehicle (MAV), this paper proposes an improved airfoil design method of fixed-wing MAV based on the profile data of S5010 airfoil.

Design/methodology/approach

Combined with the body shape variation of the stingray in the propulsion process, the parametric study of the aerodynamic shape of the original design airfoil is carried out to explore the influence of a single parameter change on the aerodynamic performance of the airfoil. Then, according to the influence law of single parameter variation on the aerodynamic performance of the airfoil, the original airfoil is synthetically deformed by changing multiple parameters.

Findings

By comparing the aerodynamic performance of the multi-parameter deformed airfoil with the original airfoil, it is found that the lift coefficient of the multi-parameter deformed airfoil changes from negative to positive value when AOA = 0°. When AOA = 2°, the lift coefficient growth rate is the largest, which is 47.27%, and the lift-to-drag ratio is increased by 50.00%. At other angles of attack, the lift, drag, and torque coefficients of the multi-parameter deformed airfoil are optimized to some extent.

Originality/value

Combined the body shape variation of the stingray in the propulsion process, the parametric study of the aerodynamic shape of the original design airfoil is carried out to explore the influence of a single parameter change on the aerodynamic performance of the airfoil.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 13 December 2023

Ying-Jie Guan and Yong-Ping Li

To solve the shortcomings of existed search and rescue drones, search and rescue the trapped people trapped in earthquake ruins, underwater and avalanches quickly and accurately…

Abstract

Purpose

To solve the shortcomings of existed search and rescue drones, search and rescue the trapped people trapped in earthquake ruins, underwater and avalanches quickly and accurately, this paper aims to propose a four-axis eight-rotor rescue unmanned aerial vehicle (UAV) which can carry a radar life detector. As the design of propeller is the key to the design of UAV, this paper mainly designs the propeller of the UAV at the present stage.

Design/methodology/approach

Based on the actual working conditions of UAVs, this paper preliminarily estimated the load of UAVs and the diameters of propellers and designed the main parameters of propellers according to the leaf element theory and momentum theory. Based on the low Reynolds number airfoil, this paper selected the airfoil with high lift drag ratio from the commonly used low Reynolds number airfoils. The chord length and twist angle of propeller blades were calculated according to the Wilson method and the maximum wind energy utilization coefficient and were optimized by the Asymptotic exponential function. The aerodynamic characteristics of the designed single propeller and coaxial propeller under different installation pitch angles and different installation distances were analyzed.

Findings

The results showed that the design of coaxial twin propellers can increase the load capacity by about 1.5 times without increasing the propeller diameter. When the installation distance between the two propellers was 8 cm and the tilt angle was 15° counterclockwise, the aerodynamic characteristics of the coaxial propeller were optimal.

Originality/value

The novelty of this work came from the conceptual design of the new rescue UAV and its numerical optimization using the Wilson method combined with the maximum wind energy utilization factor and the exponential function. The aerodynamic characteristics of the common shaft propeller were analyzed under different mounting angles and different mounting distances.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 22 August 2023

Mahesh Babu Purushothaman and Kasun Moolika Gedara

This pragmatic research paper aims to unravel the smart vision-based method (SVBM), an AI program to correlate the computer vision (recorded and live videos using mobile and…

1316

Abstract

Purpose

This pragmatic research paper aims to unravel the smart vision-based method (SVBM), an AI program to correlate the computer vision (recorded and live videos using mobile and embedded cameras) that aids in manual lifting human pose deduction, analysis and training in the construction sector.

Design/methodology/approach

Using a pragmatic approach combined with the literature review, this study discusses the SVBM. The research method includes a literature review followed by a pragmatic approach and lab validation of the acquired data. Adopting the practical approach, the authors of this article developed an SVBM, an AI program to correlate computer vision (recorded and live videos using mobile and embedded cameras).

Findings

Results show that SVBM observes the relevant events without additional attachments to the human body and compares them with the standard axis to identify abnormal postures using mobile and other cameras. Angles of critical nodal points are projected through human pose detection and calculating body part movement angles using a novel software program and mobile application. The SVBM demonstrates its ability to data capture and analysis in real-time and offline using videos recorded earlier and is validated for program coding and results repeatability.

Research limitations/implications

Literature review methodology limitations include not keeping in phase with the most updated field knowledge. This limitation is offset by choosing the range for literature review within the last two decades. This literature review may not have captured all published articles because the restriction of database access and search was based only on English. Also, the authors may have omitted fruitful articles hiding in a less popular journal. These limitations are acknowledged. The critical limitation is that the trust, privacy and psychological issues are not addressed in SVBM, which is recognised. However, the benefits of SVBM naturally offset this limitation to being adopted practically.

Practical implications

The theoretical and practical implications include customised and individualistic prediction and preventing most posture-related hazardous behaviours before a critical injury happens. The theoretical implications include mimicking the human pose and lab-based analysis without attaching sensors that naturally alter the working poses. SVBM would help researchers develop more accurate data and theoretical models close to actuals.

Social implications

By using SVBM, the possibility of early deduction and prevention of musculoskeletal disorders is high; the social implications include the benefits of being a healthier society and health concerned construction sector.

Originality/value

Human pose detection, especially joint angle calculation in a work environment, is crucial to early deduction of muscoloskeletal disorders. Conventional digital technology-based methods to detect pose flaws focus on location information from wearables and laboratory-controlled motion sensors. For the first time, this paper presents novel computer vision (recorded and live videos using mobile and embedded cameras) and digital image-related deep learning methods without attachment to the human body for manual handling pose deduction and analysis of angles, neckline and torso line in an actual construction work environment.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 4 April 2023

Muye Pang, Ruiqing Li, Ying Ding, Biwei Tang, Jing Luo and Kui Xiang

This paper aims to optimize the stiffness coefficient of the elastic element for a passive waist assistive exoskeleton (WAE). There is a tradeoff between stiffness coefficient of…

Abstract

Purpose

This paper aims to optimize the stiffness coefficient of the elastic element for a passive waist assistive exoskeleton (WAE). There is a tradeoff between stiffness coefficient of elastic element of the exoskeleton and work efficiency of the wearer, because elastic element affects original bending motion of the wearer and the force requirement of erector spinae is compensated by the other muscles. However, there is no accepted conclusion on how to determine the proper stiffness coefficient, especially with respected to the effort of groups of muscles, not only erector spinae.

Design/methodology/approach

In this study, a consumption indicator based on muscle fatigue of seven muscles is proposed and a Bayesian-based human-in-the-loop optimization approach is adopted to optimize the stiffness coefficient. Pneumatic artificial muscles are used to replace the mechanical elastic part to adjust the assistive force automatically. The proposed optimization method is verified by the way of load-lifting experiments with three different conditions: without exoskeleton, with fixed air pressure and with optimized air pressure. Six subjects participated in the experiment and each experiment is performed in different day.

Findings

Compared with No-Exo condition and static assistance condition, the parameter-optimized waist exoskeleton averagely reduces muscle fatigue of the six subjects by 45.30 ± 29.14% and 30.94 ± 30.29%, respectively. The experimental results indicate that the proposed method is effective to reduce muscle fatigue during stoop lifting task.

Originality/value

This paper provides a novel cost function construction method based on muscle fatigue and muscle synergy for passive WAE stiffness optimization.

Details

Robotic Intelligence and Automation, vol. 43 no. 3
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 2 December 2022

Mohamed Arif Raj Mohamed, Ketu Satish Kumar Reddy and Somaraju Sai Sri Vishnu

The high lift devices are effective at high angle of attack to increase the coefficient of lift by increasing the camber. But it affects the low angle of attack aerodynamic…

Abstract

Purpose

The high lift devices are effective at high angle of attack to increase the coefficient of lift by increasing the camber. But it affects the low angle of attack aerodynamic performance by increasing the drag. Hence, they have made as a movable device to deploy only at high angles of attack, which increases the design and installation complexities. This study aims to focus on the comparison of aerodynamic efficiency of different conventional leading edge (LE) slat configurations with simple fixed bioinspired slat design.

Design/methodology/approach

This research analyzes the effect of LE slat on aerodynamic performance of CLARK Y airfoil at low and high angles of attack. Different geometrical parameters such as slat chord, cutoff, gap, width and depth of LE slat have been considered for the analysis.

Findings

It has been found that the LE slat configuration with slat chord 30% of airfoil chord, forward extension 8% of chord, dip 3% of chord and gap 0.75% of chord gives higher aerodynamic efficiency (Cl/Cd) than other LE slat configurations, but it affects the low angles of attack aerodynamic performance with the deployed condition. Hence, this optimum slat configuration is further modified by closing the gap between LE slat and the main airfoil, which is inspired by the marine mammal’s nose. Thus increases the coefficient of lift at high angles of attack due to better acceleration over the airfoil nose and as well enhances the aerodynamic efficiency at low angles of attack.

Research limitations/implications

The two-dimensional computational analysis has been done for different LE slat’s geometrical parameters at low subsonic speed.

Practical implications

This bio-inspired nose design improves aerodynamic performance and increases the structural strength of aircraft wing compared to the conventional LE slat. This fixed design avoids the complex design and installation difficulties of conventional movable slats.

Social implications

The findings will have significant impact on the fields of aircraft wing and wind turbine designs, which reduces the design and manufacturing complexities.

Originality/value

Different conventional slat configurations have been analyzed and compared with a simple fixed bioinspired slat nose design at low subsonic speed.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 2 March 2023

Shima Yazdani, Erfan Salimipour, Ayoob Salimipour, Mikhail A. Sheremet and Mohammad Ghalambaz

Active flow control on the NACA 0024 airfoil defined as suction-injection jet at the chord-based Reynolds number of 1.5 × 1e + 5 is studied.

Abstract

Purpose

Active flow control on the NACA 0024 airfoil defined as suction-injection jet at the chord-based Reynolds number of 1.5 × 1e + 5 is studied.

Design/methodology/approach

The three-dimensional incompressible unsteady Reynolds-averaged Navier–Stokes equations with the SST k-ω turbulence model are used to study the effects of coflow-jet (CFJ) on the dynamic and static stall phenomena. CFJ implementation is conducted with several momentum coefficients to investigate their turnover. Furthermore, the current work intends to analyze the CFJ performance by varying the Reynolds number and jet momentum coefficient and comparing all states to the baseline airfoil, which has not been studied in prior research investigations.

Findings

It is observed that at the momentum coefficient () of 0.06, the lift coefficients at low attack angles (up to a = 15) dramatically increase. Furthermore, the dynamic stall at the given Reynolds number and with the lowered frequency of 0.15 is explored. In the instance of = 0.07, the lift coefficient curve does not show a noticeable stall feature compared to = 0.05, suggesting that a more powerful stronger jet can entirely control the dynamic stall.

Originality/value

Furthermore, the current work intends to analyze the CFJ performance by varying the jet momentum coefficient and comparing all states to the baseline airfoil, which has not been studied in prior research investigations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 January 2024

Tong-Tong Lin, Ming-Zhi Yang, Lei Zhang, Tian-Tian Wang, Yu Tao and Sha Zhong

The aerodynamic differences between the head car (HC) and tail car (TC) of a high-speed maglev train are significant, resulting in control difficulties and safety challenges in…

Abstract

Purpose

The aerodynamic differences between the head car (HC) and tail car (TC) of a high-speed maglev train are significant, resulting in control difficulties and safety challenges in operation. The arch structure has a significant effect on the improvement of the aerodynamic lift of the HC and TC of the maglev train. Therefore, this study aims to investigate the effect of a streamlined arch structure on the aerodynamic performance of a 600 km/h maglev train.

Design/methodology/approach

Three typical streamlined arch structures for maglev trains are selected, i.e. single-arch, double-arch and triple-arch maglev trains. The vortex structure, pressure of train surface, boundary layer, slipstream and aerodynamic forces of the maglev trains with different arch structures are compared by adopting improved delayed detached eddy simulation numerical calculation method. The effects of the arch structures on the aerodynamic performance of the maglev train are analyzed.

Findings

The dynamic topological structure of the wake flow shows that a change in arch structure can reduce the vortex size in the wake region; the vortex size with double-arch and triple-arch maglev trains is reduced by 15.9% and 23%, respectively, compared with a single-arch maglev train. The peak slipstream decreases with an increase in arch structures; double-arch and triple-arch maglev trains reduce it by 8.89% and 16.67%, respectively, compared with a single-arch maglev train. The aerodynamic force indicates that arch structures improve the lift imbalance between the HC and TC of a maglev train; double-arch and triple-arch maglev trains improve it by 22.4% and 36.8%, respectively, compared to a single-arch maglev train.

Originality/value

This study compares the effects of a streamlined arch structure on a maglev train and its surrounding flow field. The results of the study provide data support for the design and safe operation of high-speed maglev trains.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 1000